2.3.3. Моделирование систем с отказами
Первый шаг в методе диагностики, основанном моделях, состоит в выполнении математического описания рассматриваемой системы, которое так же описывает все возможные случаи отказов. Будем рассматривать линейные динамические системы со многими входами и выходами. В случае нелинейных систем, можно рассматривать линеаризованную в рабочей точке модель.
Как было отмечено ранее, мы будем рассматривать диагностику отказов для модели системы без обратной связи. В целях моделирования система без обратной связи может быть разделена на три части: исполнительные механизмы, динамика системы и датчики (рисунок 2.4).
Рис.2.4. Система без обратной связи
Динамика системы, представленной на рисунке 2.4 может быть описана моделью в переменных состояния:
(2.1)
где - вектор состояния системы, - вектор входного сигнала с исполнительного механизма, - фактический (не доступный) выходной вектор системы; А, В, С - известные матрицы системы соответствующих размерностей.
Рис. 2.5. Динамика системы
Когда происходит отказ компонента в системе (рисунок 2.5), динамическая модель системы может быть описана так:
. (2.2)
Отказ компонента представляет случай, когда изменение некоторых условий в системе приводит к невыполнению динамических отношений, например, утечка в баке в системе двух баков. В некоторых случаях, отказ может быть выражен как изменение параметров системы. Например, при изменении в i-ой строке и j-ом столбце матрицы А, динамика системы может быть описана так:
, (2.3)
где - это j-ый элемент вектора и - это n-мерный вектор с нулевыми элементами, кроме ‘1’ в i-том элементе.
Вообще говоря, реальный выход системы непосредственно не доступен, для его измерения используются датчики. Этот случай отказа изображен на рисунке 2.6 и математически может быть описан следующим образом (при пренебрежении динамикой датчиков):
, (2.4)
где - вектор отказа датчика.
Рис. 2.6. Датчики, выход и измеряемый выход
Правильно выбрав вектор , мы можем описать все случаи отказов датчиков. Когда выходной датчик показывает фиксированную величину (скажем ноль), вектор измерения y(t)=0 и вектор отказа = - yR(t). С другой стороны, когда датчики подвержены мультипликативному отказу, измерение становится , а вектор отказов может быть переписан так =.
Так же верно, что обычно действительный сигнал с исполнительного механизма системы часто не доступен. это реакция исполнительного механизма на команду (при пренебрежении динамикой исполнительного механизма) (рисунок 2.6):
, (2.5)
где - вектор отказа исполнительного механизма, а - известная команда управления. Подобно случаю отказа датчика, могут быть рассмотрены так же различные ситуации для функции отказа .
Рис. 2.7. Исполнительный механизм, вход и регулирующее воздействие
В случае, если вход системы неизвестен (т.е. в неконтролируемых системах), для измерения входа исполнительного механизма может быть использован входной датчик (рисунок 2.8). Датчик может быть представлен следующей моделью:
, (2.6)
. (2.7)
Рис. 2.8. Датчик входа
Когда в системе действуют всевозможные отказы датчиков, ее компонентов и исполнительных механизмов, ее модель может быть представлена следующим образом:
(2.8)
Рассматривая общий случай модель системы со всевозможными отказами может быть описана следующей моделью в переменных состояния:
(2.9)
где - вектор отказов, каждый элемент которого (i=1,2,…g) соответствует отдельному отказу. С практической точки зрения, неразумно делать дальнейшие предположения о характеристиках отказов, считая при этом их неизвестными функциями времени. Матрицы R1 и R2 известны как матрицы распределения отказов, представляющие воздействие отказов на систему. Вектор u(t) – это вход исполнительного механизма и или измеряемое управляющее воздействие (actuation), вектор y(t) – измеряемый выход. Оба вектора считаются известными при диагностике. В литературе по диагностике отказов векторы u(t) и y(t) просто называются входными и выходными векторами системы, за которой осуществляется мониторинг.
Представление системы со всеми возможными отказами в виде передаточной матрицы вход-выход имеет вид:
, (2.10)
где
(2.11)
... ). Подпрограмма завершена, управление передается назад вызывавшему модулю. 6. Технико-экономическое обоснование 6.1 Пути снижения затрат за счет внедрения системы Внедрение автоматической системы управления маслонапорной установкой гидроэлектростанции решает следующие задачи - Полностью автоматическая система управления маслонапорной установкой не требует участия человека ...
... К. Сатпаева» для просмотра и ввода информации системы оперативно-диспетчерского контроля и управления, создаваемые на Visual Basic. Специфика используемого в системе оперативно-диспетчерского контроля и управления РГП «Канал им. К. Сатпаева» ПО такая, что разработка ПО, как таковая, может производиться только при создании самой системы. Применяемое ПО является полуфабрикатом. Основная задача ...
... его инфраструктуры, а также выполнения международных обязательств по поставкам газа. 1.3 Роль договора в регулировании отношений по поставкам газа Определяя газоснабжение одной из форм энергоснабжения, законодатель ставит перед юристами-практиками трудноразрешимую задачу об определении правовой природы соответствующего договора, поскольку далее указывает, что газоснабжение представляет ...
... изолировать себя от земли (стоять на сухих досках, деревянной лестнице и т.д.). Билет № 4. ИТР ответственные за безопасную эксплуатацию ТПУ и ТС 1. Требования к персоналу. Обучение и работа с персоналом Лица, принимаемые на работу по обслуживанию теплопотребляющих установок и тепловых сетей, должны пройти предварительный медицинский осмотр и в дальнейшем проходить его периодически в ...
0 комментариев