2.17 Раскисление металла
Материал - ферромарганец Mn3 (C=6,00: Si=1.0: Mn=78.0: P=0.3: S=0.02: Fe=14.68).
Способ раскисления - в ковше
Определяем расход ферромарганца:
Задаемся [Mn]гот =0,45%
UMn =30%
и находим:
Определяем угар и усвоение ферромарганца:
Углерод
; окисляется
остается 0,012 где 50 % составляет количество углерода, выделившееся за время выпуска.
Кремний; окисляется остается 0. Принимаем что кремний окисляется полностью.
Марганец; окисляется остается 0,2219 где 30 % составляет количество марганца, окислившееся за время выпуска стали.
Фосфор; окисляется 0, т.е. весь фосфор остается в
металле.
Железо; не окисляется, остается в металле.
Количество образовавшихся оксидов из ферромарганца.
Sферокс =0,161кг
Sэлем.мфер =0,295кг
Sэл.окфер =0,111кг
Sэлемфер =0,406кг
Количество кислорода из воздуха на окисление элементов ферромарганца:
qO2 = Sферокс -Sэл.окфер =0,161-0,111=0,05кг
2.18 Масса и состав металла после раскисления
Перед раскислением: qм =90,421кг
Вносится ферромарганцем: mFeMn =0,295кг
Готовой стали:
qмгот =90,421+0,295=90,716кг
Состав металла после раскисления, %:
2.19 Расход металла на всю плавку
Принимаем степень усвоения извести =0,8
и коэффициент усвоения кислорода =0,9, имеем:
Чугун | 120,277 | т |
Лом | 39,723 | т |
Окатыши | 0,48 | т |
Известь | 13,371 | т |
Боксит | 1,28 | т |
Ферромарганец | 0,65 | т |
Дутье | 8000 | м^3 |
Список литературы
1. Баптизманский В.И. Теория кислородно-конвертерного процесса. М. Металлургия, 1975 с.375
2. Меджибожский М.Я. Основы термодинамики и кинетики сталеплавильных процессов. Киев-Донецк. «Вища школа», 1986 с.279.
3. Бигеев А.М. Математическое описание и расчеты сталеплавильных процессов. М. Металлургия, 1982 с.158.
4. Зайков А.М., Лифшиц С.И. Выплавка стали в кислородных конвертерах. Киев, «Техника», 1968.
5. Бигеев А.М., Селиванов В.И. Упрощение расчета плавки стали в кислородных конвертерах (учебное пособие). Магнитогорск. 1989.
6. Югов П.И., Шумов М.М.//Металлург. 1986. №10. С.17-20.
7. Колпаков С.В., Визингер Х., Югов П.И. //Сталь. 1996.№4. С.1-4.
8. Югов П.И., Шумов М.М.//Сталь. 2001. №6. С.50-54
... = 0,7∙7,023 = 4,916 нм3 Определяем продолжительность продувки, мин , где - интенсивность продувки, нм3/(т∙мин) - (задана). = = 14,9 мин. Количество и состав конвертерных газов: = + ; кг (2.50) = ∙22,4/44; нм3 = 1.17 + 0.01(7,94∙3,5 + 0,4∙6,0) = 1,472 кг = 1,472∙22,4/44 = 0,749 нм3 = , кг (2.51) = ∙22,4/28; нм3 = 6,63 кг ...
... использования охладителей. Температура металла на выпуске ОС Фактическая 1671 Целевая 1655-1685 Величина перегрева 0 3. Результаты Вывод В результате моделирования выплавки стали кислородно-конвертерным процессом была получена на выходе сталь с требуемым химическим составом и температурой с небольшим отклонением по содержанию серы. Это связано с тем, что ...
... рынки сбыта и обеспечить решение вышеперечисленных задач. Этого можно добиться лишь за счет коренного технического перевооружения и новых технологий. 1.2 Вариант строительства ККЦ № 2 ММК Кислородно-конвертерный цех № 2 ОАО «ММК» предполагается строить на площадке перед имеющимся сортовым станом блюминга № 3. Это позволит значительно сократить время транспортировки горячих блюмов из ...
... шлаковыми смесями). Разливка стали в современных конвертерных цехах производится на машинах непрерывного литья заготовок. Особенности выбранного варианта производства стали определяют и схему расчета плавки стали в конвертере. Целью расчета плавки является определение минимально необходимого количества материалов для получения заданных массы жидкой стали, ее химического состава и температуры. ...
0 комментариев