3.5.3 Тепловой конструктивный расчет
Тепловой конструктивный расчет проводится для определения основных габаритных размеров аппарата.
Поскольку теплообмен между газом и частицами в кипящем слое заканчивается на высоте равной двум-трем диаметрам частиц слюды, то расчет скорости псевдоожижения проводим при температуре, равной температуре кипящего слоя. При этом средняя плотность газов в слое:
ρг = ρс.г. ((t1 + 273)/(t2 + 273)),(3.5.3.1)
ρг = 0,584 ((330 + 273)/(100 + 273)) = 0,944 кг/м3. (3.5.3.2)
Находим по таблице 3.5.3.1 кинематический коэффициент вязкости газа: υг = 23,9∙10-6 м2/с.
Таблица 3.5.3.1 Зависимость кинематического коэффициента вязкости газа от его температуры при давлении, близком к атмосферному
tг, °C | 100 | 120 | 140 | 160 | 180 | 200 | 250 | 300 | 350 |
υг∙10-6, м2/с | 23,9 | 26,2 | 28,7 | 31,0 | 33,5 | 36,0 | 42,8 | 49,9 | 57,3 |
Определим критерий Архимеда для частицы:
Ar = [(g∙d3)/υг2] ∙ [(ρс - ρг)/ρг] , (3.5.3.3)
где d - средний размер частиц слоя, равный 0,3 мм;
ρс - плотность слюды флогопит, равная 2700 кг/м3.
Ar = [(9,81∙0,33∙10-9)/2,392 ∙ 10-10]*[(2700 - 0,944)/0,944] = 1326.(3.5.3.4)
Определяем критерий Рейнольдса, соответствующий началу ожижения слоя:
Reкр= (Ar∙ε04,75)/(18 + 0,61∙(Ar∙ε04,75)0,5), (3.5.3.5)
где ε0 - порозность насыпного слоя, равная 0,6.
Reкр= (1326∙0,64,75)/(18 + 0,61∙(1326∙0,64,75)0,5) = 4,76. (3.5.3.6)
Тогда скорость ожижения равна:
ωкр= Reкр ∙( υг/d), (3.5.3.7)
ωкр= 4,76∙(23,9 ∙ 10-6/0,3∙10-3) = 0,37 м/с. (3.5.3.8)
Принимаем значение порозности в рабочих условиях ε = 0,8.
Определяем критерий Рейнольдса в рабочих условиях:
Reр= (1326∙0,84,75)/(18 + 0,61∙(1326∙0,84,75)0,5) = 14,76. (3.5.3.9)
Рабочая скорость подачи газа:
ωр = Reр∙( υг/d), (3.5.3.10)
ωр = 14,76(23,9 ∙ 10-6/0,3∙10-3) = 1,17 м/с. (3.5.3.11)
Число псевдоожижения в рабочих условиях:
Wр = ωр/ωкр, (3.5.3.12)
Wр = 1,17/0,37 = 3,16. (3.5.3.13)
Среднее влагосодержание газа:
xг = (x1 + x2)/2, (3.5.3.14)
где x1 - влагосодержание теплоносителя на входе в сушильную камеру при заданной температуре t1 = 330° С, равное 0, 024 кг/кг;
x2 - истинное значение влагосодержания, равное 0,095 кг/кг.
xг = (0, 024 + 0,095)/2 = 0,06 кг/кг. (3.5.3.15)
Определим площадь газораспределительной решетки:
S = (L∙(1 + xг))/( ρг∙ ωр), (3.5.3.16)
где L - массовый расход свежего теплоносителя, равный 0, 23 кг/с
S = (0, 23∙(1 + 0,06))/(0,944∙1,17) = 0,22 м2.(3.5.3.17)
Из условия устойчивого псевдоожижения принимаем высоту насыпного слоя H0 = 0,3 м. Тогда масса сухого продукта, находящегося на решетке:
Gс = ρс∙(1-ε0)∙S∙ H0,(3.5.3.18)
Gс = 2700∙(1 - 0,6)∙0,22∙0,3 = 71,3 кг.(3.5.3.19)
Тогда время пребывания частиц в кипящем слое, необходимое для полного протекания процесса сушки:
τ = Gс/G2,(3.5.3.20)
где G2 - производительность по сухому продукту, равная 143 кг/ч.
τ = 71,3/(143/3600) = 1795 с. (3.5.3.21)
Определяем высоту кипящего слоя в рабочих условиях:
H = H0∙((1 - ε0)/(1 - ε)),(3.5.3.22)
H = 0,3∙((1 – 0,6)/(1 – 0,7)) = 0,4 м.(3.5.3.23)
Тогда высота сепарационной зоны аппарата:
Hсеп = 4∙Н,(3.5.3.24)
Hсеп = 4∙0,4 = 1,6 м.(3.5.3.25)
Определяем конструктивную высоту аппарата от газораспределительной решетки до газохода:
Hа = Hсеп + Н,(3.5.3.26)
Hа = 1,6 + 0,4 = 2 м.(3.5.3.27)
Диаметр аппарата:
D1 = ((4∙S)/π)0,5, (3.5.3.28)
D1 = ((4∙0,22)/3,14)0,5 = 0,53 м.(3.5.3.29)
Газораспределительная решетка является наиболее ответственным узлом аппарата, от ее работы зависит качество псевдоожижения и, следовательно, интенсивность сушки. На рисунке 3.5.3.1 представлена конструкция наиболее распространенного типа колпачковой газораспределительной решетки для сушилок с кипящим слоем.
Рисунок 3.5.3.1. Конструкция наиболее распространенного типа колпачковой газораспределительной решетки
Размеры d1, H1, H2 принимаются конструктивно ( d1 = 3050 мм, H2 = 2050 мм, H1 = 50 100 мм). Шаг s1 между колпачками выбирается в пределах от 150 до 250 мм. Число отверстий в колпачках n0 - от 4 до 16. Диаметр центрального отверстия колпачка d2 должен быть таким, чтобы скорость движения газа в нем составляла ωг= 25
0 комментариев