4. Исходя из формулы р = nkT , вычислить концентрацию п молекул воздуха при нормальных условиях (k - постоянная Больцмана).
5. Вычислить среднее число столкновений молекул, испытываемых одной молекулой за одну секунду .
6. Вычислить эффективный диаметр молекул воздуха
Отчет по лабораторной работе №4
«Вязкость жидкостей и газов»
выполненной студент…. …. курса, ….. Ф.И. ……….
группа ….. «….» …………….. 200 … г.
Цель работы: ………………………………………………………………………………………
Часть I. Определение вязкости жидкости по методу Стокса
Таблица 1
Жидкость....................
Расстояние между метками l =... ±..... см
Плотность жидкости r0 = …± … г/см3
Плотность материала шарика r = … ± … г/см3
№ п/п | Диаметр шарика d, мм | Время движения шарика t, с | Вязкость жидкости h, Па× с |
1 |
|
|
|
2 |
|
|
|
3 |
|
|
|
4 |
|
|
|
5 |
|
|
|
Среднее значение вязкости жидкости |
Формулы для расчета и расчет погрешности измерения вязкости жидкости1:
Вывод: ……………………………………………………………………………………………..
Часть П. Определение вязкости воздуха по методу Пуазейля
Таблица 2
Диаметр капилляра d =... ± ... мм; Длина капилляра I =... ±.... мм
№ п/п | Объем прошедшего через капилляр воздуха V, см3 (или мл) | Перепад давлений, Dh, см вод. ст. | Перепад давлений Dр, Па | Время протекания воздуха через капилляр t, с | Вязкость воздуха h´10-5 , Па×с |
1 | |||||
2 | |||||
3 | |||||
Среднее значение вязкости воздуха |
Формулы для расчета и расчет погрешности измерения вязкости воздуха[2]:
Вывод: ……………………………………………………………………………………………..
Дополнительное задание
Нормальные условия: p = … мм рт. ст.= … Па; T = … К
1. Плотность воздуха: r = … кг/м3
2. Средняя арифметическая скорость молекул воздуха:
3. Средняя длина свободного пробега молекул воздуха:
4. Концентрация молекул воздуха: n =… 1/м3
5. Среднее число столкновений молекул воздуха
... изменение. 3. Что такое термодинамическая вероятность состояния (статистический вес). 4. Статистический смысл изменения энтропии. 5. Первый закон термодинамики. 6. Вывод рабочей формулы (36) данной работы. 7. Второй закон термодинамики и его статистический смысл. 6. ОПРЕДЕЛЕНИЕ ТЕМПЕРАТУРЫ И УДЕЛЬНОЙ ТЕПЛОТЫ ПЛАВЛЕНИЯ МЕТАЛЛА Цель работы Исследовать фазовый переход первого рода ...
... случайность, спонтанность непредсказуемость развития процесса (своего рода физический экзистенциализм), и в силу этого он далек от парадигмы абсолютности. Рассмотрим уровневый подход на примере энергии. Сегодня основные виды энергии в физике рассматриваются по парам: потенциальная – кинетическая, электрическая – магнитная, тепловая – механическая, причем каждая пара рассматривается автономно, ...
... в 2 раза. 180. Найти относительную скорость движения двух частиц, движущихся навстречу друг другу со скоростями u1 = 0,6×c и u2 = 0,9×c. II. ОСНОВЫ МОЛЕКУЛЯРНОЙ ФИЗИКИ И ТЕРМОДИНАМИКИ Молекулярная физика и термодинамика – разделы физики, в которых изучаются макроскопические процессы в телах, связанные с огромным числом содержащихся в них атомов и молекул (макроскопические системы ...
... . Фронт волны. Интерференция волн. Принцип Гюйгенса. Дифракция волн. Уравнение бегущей волны. Стоячие волны. Звуковые волны. Скорость звука. Громкость и высота звука. II. Молекулярная физика и термодинамика II.1. Основы молекулярно-кинетической теории Основные положения молекулярно-кинетической теории и их опытное обоснование. Броуновское движение. Массы и размеры молекул. Моль вещества. ...
0 комментариев