3.1. Теоретическая часть

Крутильный маятник представляет собой стержень, шнур или проволоку, один, (как правило – верхний) конец которой закреплен. К нижнему концу подвешивается тело произвольной формы. Если повернуть на некоторый угол груз с проволокой вокруг ее длинной (вертикальной) оси, и отпустить, то в системе возникнут крутильные колебания. Дифференциальное уравнение малых крутильных колебаний в отсутствие трения имеет привычный вид

(16)

По аналогии с пружинным маятником, для которого  (k – коэффициент упругости, m – масса, как мера инертности), для крутильного маятника может быть записано , где f – коэффициент упругости кручения подвеса, J – момент инерции груза.

Таким образом, если масса проволоки ничтожна в сравнении с грузом, то период гармонических колебаний крутильного маятника зависит от момента инерции подвешенного тела и от упругих свойств материала подвеса:

(17)

Между коэффициентом f упругости кручения образца и модулем сдвига G материала этого образца существует следующее соотношение

 , (18)

где d – диаметр цилиндрической проволоки, L – ее длина.

3.1. Экспериментальная часть

В данной работе крутильный маятник (рис 3) представляет собой шнур или проволоку длиной до 1 м, верхний конец которой закреплен в зажиме, например, прибит к верхней части проема двери. На нижнем конце имеется легкая горизонтальная платформа, в которой закрепляется груз. Грузы имеют правильную геометрическую форму (стержни) и известную массу, что облегчает расчет их моментов инерции.

Задание 1. Определение зависимости периода колебаний

крутильного маятника от момента инерции груза.

1. Штангенциркулем измерьте диаметр проволоки, а линейкой ее длину.

2. Измерьте длину стержня и, по известной массе, рассчитайте его момент инерции.

3. Укрепите стержень в платформе так, чтобы он располагался горизонтально, а центр его тяжести совпадал с линией подвеса.

4. Сообщите маятнику вращательный импульс так, чтобы он совершал крутильные колебания с небольшой амплитудой. Измерьте суммарное время 5-10 колебаний маятника. Вычислите период колебаний.

5. Проделайте подобные измерения и расчеты с другими телами из набора. Результаты занесите в таблицу 3.1 отчета.

6. Постройте график зависимости T(J) в координатных осях [J,T2].

7. По виду графика сделайте вывод о характере зависимости T(J) для крутильного маятника.

 

Задание 2. Определение модуля сдвига материала методом крутильных колебаний

1. Используя вычисленный ранее момент инерции стержня и период колебаний по формуле (17) рассчитайте коэффициент упругости кручения f подвеса.

2. По формуле (18) рассчитайте модуль сдвига G материала проволоки.

3. Замените проволоку (материал – по указанию преподавателя) и, проделав необходимые измерения, определите коэффициент упругости кручения f и модуль сдвига G ее материала.

4. Рассчитайте абсолютную и относительную погрешности измерений величин f и G.

5. Сравните полученные значения модуля сдвига с табличными значениями и сделайте вывод о точности проделанных измерений. В выводе следует также проанализировать, какая из измеряемых величин вносит наибольшую погрешность в результат измерения.

Задание 3. Определение моментов инерции тел методом крутильных колебаний

1. Подвесив исследуемое тело (кольцо с указанной на нем массой) к проволоке и известным коэффициентом упругости кручения, измерьте период колебаний.

2. По формуле 15 рассчитайте момент инерции исследуемого тела относительно оси, совпадающей с осью проволоки.

3. Рассчитайте момент инерции кольца по его массе и радиусу относительно этой же оси вращения.

4. Сравните экспериментальный и теоретический результаты.

 

Контрольные вопросы

1. Дайте определение гармонических колебаний и приведите примеры.

2. Какие величины характеризуют гармонические колебания?

3. Запишите дифференциальное уравнение свободных гармонических колебаний.

4. Дайте строгое определение математического маятника и опишите закономерности его колебаний.

5. Какие упражнения были выполнены вами с этим маятником?

6. Дайте строгое определение физического маятника и опишите закономерности его колебаний.

7. Какие упражнения были выполнены вами с физическим маятником?

8. Дайте строгое определение крутильного маятника и опишите закономерности его колебаний.

9. Какие упражнения были выполнены вами с крутильным маятником?

10.  Исходя из графика T= f(l) для физического маятника, определите при каком отношении (l/d) период колебаний стержня минимальный.

 


Отчет о выполнении лабораторной работы № 1

«Изучение колебательного движения»,

выполненной студент …...... курса, …...... Ф. И. …........

группа …. «…»…………. 200…г.

Цель работы: ……………………………………………………………………………………

 

Часть I.  Математический маятник

Задание 1. Проверка влияния массы математического маятника на его период

колебаний

Длина маятника l =…м.

Первоначальное отклонение j =…

Таблица 1.1.

№ п/п

m, кг

N

t,с

T,с

1

2

3

 

 

Вывод: …………………………………………………………………………………………….

Задание 2. Изучение зависимости периода колебаний математического маятника

от его длины

 

Первоначальное отклонение j =…

Подпись: № п/п l, м N t, c T,c T2(c)2
1   
2   
3   
4   
5   
6   

 Таблица 1.2.

График зависимости T2=f(l)

Таблица 1.3. МНК

Обозначения: l = x , T2 = y

№ п/п

xi

yi

1

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

=

S = S =

=

S = S = S =

 

Коэффициенты:  = … ,  =

Уравнение прямой: (T2) = …×l + …

Вычисление погрешностей измерений

= … , = … , = … .

=…,  

Контрольное задание. Определение ускорения свободного падения

k =…. g = 4p2/k=…. g =…±… м/с2 , dg =… %

Выводы: …………………………………………………………………………………………..


Часть II. Физический маятник

Задание 1. Изучение зависимости периода колебаний физического маятника от его

момента инерции и расстояния между осью качаний и центром тяжести

маятника

Первоначальное отклонение j =…

Таблица 2.1

№ п/п

l , м

N

t , c

T , c

l2, c2

T2l , c2×м

1

 

 

 

 

 

 

2

 

 

 

 

 

 

3

 

 

 

 

 

 

И т. д.

 

График зависимости T = f(l). График зависимости T2l =f(l2)

Выводы: ……………………………………………………………………………………………

 

 

 

 

Контрольное задание. Определение ускорения свободного падения и длины стержня

 

Выводы: …………………………………………………………………………………………..


Задание 2. Определение моментов инерции тел различной формы методом

колебаний

Форма тела: ………….

Масса тела: m = … ± …. кг

Расстояние от центра тяжести до оси качания: l = … ± … м

Период колебаний тела: Т = …±… с

Измеренный момент инерции тела относительно оси качания: J = … кг×м2

Формула для расчета погрешности измеренного момента инерции и расчет погрешности: ………………………………………………………………………………………………………

Окончательный результат с абсолютной и относительной погрешностью измерения:

J = … ± …. кг× м2 ; dJ = … %

 

Геометрические размеры тела (с погрешностями измерений): …………………………….

Вычисленный момент инерции тела относительно центра тяжести: J = … кг×м2

Вычисленный момент инерции тела относительно оси качания: J = … кг×м2

Формулы для расчета погрешностей вычисленных моментов инерции и расчет погрешностей: ……………………………………………………………………………………………….

Окончательный результат с абсолютной и относительной погрешностью измерения:

J = … ± …. кг× м2 ; dJ = … %

Выводы: ……………………………………………………………………………………………

Часть III. Крутильный маятник

Задание 1. Определение зависимости периода колебаний крутильного маятника от

момента инерции груза

Таблица 3.1.

стерж.

 

m, кг

 

l,

м

 

J, кгм2

 

N

 

t,

c

 

 

T,

 с

 

T2, с2

1

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

 

 

График зависимости T2 =f(J)

Вывод: ……………………………………………………………………………………………..

 

 

 

Задание 2. Определение модуля сдвига материала методом крутильных колебаний

Материал подвеса: ............

Диаметр проволоки: d = ... ± .... мм = (… ± …)´10-3 м

Длина подвеса: L = ... ± ... см = (… ± …) ´10-2 м

Угловой коэффициент наклона графика: k =(DT)2/DJ = …

Коэффициент упругости кручения проволоки: f = 4p2/k = ….

Модуль сдвига материала проволоки:

G = ... ± ... Н/м2, dG = ... %

Выводы: .....................................................................................................................................…..

 

 

Задание 3. Определение моментов инерции тел методом крутильных колебаний

Форма тела: ……….

Масса тела: m = … ± …. кг

Коэффициент упругости кручения проволоки: f = ….

Период колебаний тела: Т = …±… с

Измеренный момент инерции тела относительно центра тяжести: J = … кг×м2

Формула для расчета погрешности измеренного момента инерции и расчет погрешностей: ……………………………………………………………………………………………….

Окончательный результат с абсолютной и относительной погрешностью измерения:

J = … ± …. кг× м2 ; dJ = … %

Геометрические размеры тела (с погрешностями измерений): …………………………….

Вычисленный момент инерции тела относительно центра тяжести: J = … кг×м2

Формула для расчета погрешности вычисленного момента инерции и расчет погрешностей: ……………………………………………………………………………………………….

Окончательный результат с абсолютной и относительной погрешностью измерения:

J = … ± …. кг× м2 ; dJ = … %

Выводы……………………………………………………………………………………………..


Лабораторная работа №4 ВЯЗКОСТЬ ЖИДКОСТЕЙ И ГАЗОВ

 

 
 

Цель работы

Углубить теоретические представления о механизмах возникновения внутреннего трения. Освоить методы измерения вязкости жидкостей и газов.


Информация о работе «Физика: механика и термодинамика»
Раздел: Физика
Количество знаков с пробелами: 67410
Количество таблиц: 17
Количество изображений: 19

Похожие работы

Скачать
89077
4
25

... изменение. 3. Что такое термодинамическая вероятность состояния (статис­тический вес). 4. Статистический смысл изменения энтропии. 5. Первый закон термодинамики. 6. Вывод рабочей формулы (36) данной работы. 7. Второй закон термодинамики и его статистический смысл. 6. ОПРЕДЕЛЕНИЕ ТЕМПЕРАТУРЫ И УДЕЛЬНОЙ ТЕПЛОТЫ ПЛАВЛЕНИЯ МЕТАЛЛА Цель работы Исследовать фазовый переход первого рода ...

Скачать
8952
1
0

... случайность, спонтанность непредсказуемость развития процесса (своего рода физический экзистенциализм), и в силу этого он далек от парадигмы абсолютности. Рассмотрим уровневый подход на примере энергии. Сегодня основные виды энергии в физике рассматриваются по парам: потенциальная – кинетическая, электрическая – магнитная, тепловая – механическая, причем каждая пара рассматривается автономно, ...

Скачать
121629
26
25

... в 2 раза. 180. Найти относительную скорость движения двух частиц, движущихся навстречу друг другу со скоростями u1 = 0,6×c и u2 = 0,9×c. II. ОСНОВЫ МОЛЕКУЛЯРНОЙ ФИЗИКИ И ТЕРМОДИНАМИКИ Молекулярная физика и термодинамика – разделы физики, в которых изучаются макроскопические процессы в телах, связанные с огромным числом содержащихся в них атомов и молекул (макроскопические системы ...

Скачать
13869
0
0

... . Фронт волны. Интерференция волн. Принцип Гюйгенса. Дифракция волн. Уравнение бегущей волны. Стоячие волны. Звуковые волны. Скорость звука. Громкость и высота звука. II. Молекулярная физика и термодинамика II.1. Основы молекулярно-кинетической теории Основные положения молекулярно-кинетической теории и их опытное обоснование. Броуновское движение. Массы и размеры молекул. Моль вещества. ...

0 комментариев


Наверх