1.1. Теоретическая часть

 Маятник – тело, совершающее колебательное движение под действием упругой или подобной ей, «квазиупругой» силы. Простейший маятник – массивный груз на подвесе, находящийся в поле силы тяжести. Если подвес нерастяжим, размеры груза пренебрежимо малы по сравнению с длиной подвеса и масса нити пренебрежимо мала по сравнению с массой груза, то груз можно рассматривать как материальную точку, находящуюся на неизменном расстоянии l от точки подвеса О. Такой маятник называется математическим.

На груз действуют силы: натяжения нити  и тяжести , которые в положении равновесия (точка С, рис.1) компенсируют друг друга . Для возбуждения колебаний маятник выводят из положения равновесия, например, в точку С`. Теперь на него действует сила , направленная к положению равновесия и пропорциональная смещению, маятник обладает избыточной потенциальной энергией mgh по отношению к положению равновесия. Эта энергия обуславливает колебание, происходящее по дуге окружности и описываемое основным уравнением динамики вращательного движения

  , (1)

где - результирующий вращающий момент, модуль этого вектора равен ; - угловое ускорение, J = ml2 – момент инерции груза относительно оси ОО¢, проходящей через точку подвеса О, перпендикулярно плоскости колебаний (плоскости чертежа).

 Дифференциальное уравнение колебаний математического маятника в отсутствии сил сопротивления имеет вид

, (2)

откуда получаем

(3)

Для достаточно малых углов (j<5-6°) sinj»j (в радианах), тогда

 , (4)

где .

Уравнение (4) представляет собой однородное дифференциальное уравнение второго порядка. Его решением является функция

, (5)

где j0 – амплитуда, a0 – начальная фаза. В этом можно убедиться, подставив (5) в (4).

Из (5) следует, что угол отклонения маятника из положения равновесия изменяется по гармоническому закону. Величина  является циклической частотой собственных колебаний маятника, тогда величина

(6)

- период колебаний математического маятника.1

Из выражения (6) следуют три закона колебаний математического маятника:

При малых углах отклонения (sinj»j или j<60) и в отсутствие сторонних сил

1. период колебаний не зависит от массы маятника;

2. период колебаний не зависит от амплитуды;

3. период колебаний определяется формулой .

Две из этих закономерностей подлежат проверке в данной работе.

 

1.2. Экспериментальная часть

Используемый в работе маятник представляет собой модель математического маятника - груз, подвешенный на тонкой нити. В работе используются не менее трех грузов, размеры которых значительно меньше длины нити (примерно как 1:50) и которые существенно отличаются по массе (примерно как 1:2:4), но близки по форме и размерам, чтобы силы сопротивления, возникающие при их движении, были примерно одинаковыми. Следует помнить, что длина маятника – это расстояние от точки подвеса до центра массы груза. Начальный угол отклонения маятника из положения равновесия не следует брать больше, чем 10-15°.

Задание 1. Проверка влияния массы математического

маятника на период его колебаний

1. Закрепив тело на подвесе, измеряют время 10 – 20 полных колебаний при возможно большей длине маятника. Повторяют измерения для других грузов. Данные заносят в таблицу 1.1 отчета.

2. Вычисляют период колебаний с точностью до 0,001 секунды.

3. Вычисляют оценочно относительную инструментальную погрешность измерений d.

4. Сравнивают периоды колебаний. Если различие в периоде колебаний не превышает 1% (приблизительно 0,01 с), то можно сделать вывод о практической независимости периода колебаний математического маятника от его массы.

 

Задание 2. Изучение зависимости периода колебаний

математического маятника от его длины

1. Подвешивают на нити стальной шарик. Длину подвеса изменяют с таким шагом, чтобы получить с данной нитью 5-6 экспериментальных точек. Число колебаний в каждом опыте 10-15. Угол отклонения маятника из положения равновесия не должен превышать 5-6°. Полученные данные заносят в таблицу 1.2 отчета.

2. Зависимость Т=f(l) нелинейная. Поэтому для удобства экспериментальной проверки эту зависимость следует линеаризировать. Можно, например, построить график зависимости квадрата периода колебаний от длины маятника Т2=f(l). Если экспериментальные точки ложатся на прямую с небольшим разбросом, то можно сделать вывод о выполнении формулы (6) и следовательно, одного из законов математического маятника. Если разброс велик, то следует повторить всю серию измерений.

 

Контрольное задание.  Определение ускорения свободного падения.

 С помощью полученного графика можно определить ускорение свободного падения. Предварительно следует получить точное уравнение экспериментальной прямой. Для этого применяют метод наименьших квадратов (МНК) и определяют угловой коэффициент прямой, т.е.

k=DT2/Dl = 4p2/g , откуда g=4p2/k.

Определите из графика k =DT2/Dl и вычислите ускорение свободного падения.

По формулам МНК определите погрешность измерения g.

Часть II. Физический маятник


Информация о работе «Физика: механика и термодинамика»
Раздел: Физика
Количество знаков с пробелами: 67410
Количество таблиц: 17
Количество изображений: 19

Похожие работы

Скачать
89077
4
25

... изменение. 3. Что такое термодинамическая вероятность состояния (статис­тический вес). 4. Статистический смысл изменения энтропии. 5. Первый закон термодинамики. 6. Вывод рабочей формулы (36) данной работы. 7. Второй закон термодинамики и его статистический смысл. 6. ОПРЕДЕЛЕНИЕ ТЕМПЕРАТУРЫ И УДЕЛЬНОЙ ТЕПЛОТЫ ПЛАВЛЕНИЯ МЕТАЛЛА Цель работы Исследовать фазовый переход первого рода ...

Скачать
8952
1
0

... случайность, спонтанность непредсказуемость развития процесса (своего рода физический экзистенциализм), и в силу этого он далек от парадигмы абсолютности. Рассмотрим уровневый подход на примере энергии. Сегодня основные виды энергии в физике рассматриваются по парам: потенциальная – кинетическая, электрическая – магнитная, тепловая – механическая, причем каждая пара рассматривается автономно, ...

Скачать
121629
26
25

... в 2 раза. 180. Найти относительную скорость движения двух частиц, движущихся навстречу друг другу со скоростями u1 = 0,6×c и u2 = 0,9×c. II. ОСНОВЫ МОЛЕКУЛЯРНОЙ ФИЗИКИ И ТЕРМОДИНАМИКИ Молекулярная физика и термодинамика – разделы физики, в которых изучаются макроскопические процессы в телах, связанные с огромным числом содержащихся в них атомов и молекул (макроскопические системы ...

Скачать
13869
0
0

... . Фронт волны. Интерференция волн. Принцип Гюйгенса. Дифракция волн. Уравнение бегущей волны. Стоячие волны. Звуковые волны. Скорость звука. Громкость и высота звука. II. Молекулярная физика и термодинамика II.1. Основы молекулярно-кинетической теории Основные положения молекулярно-кинетической теории и их опытное обоснование. Броуновское движение. Массы и размеры молекул. Моль вещества. ...

0 комментариев


Наверх