3. Системы функций алгебры логики
3.1 Функциональная полнота
Алгебра над множеством логических функций с двумя бинарными операциями и называется алгеброй Жегалкина. В алгебре Жегалкина выполняются следующие соотношения:
а также соотношения булевой алгебры, относящиеся только к конъюнкции и константам (с конъюнкцией).
Отрицание и дизъюнкция в этой алгебре выражаются следующим образом:
Формулы, содержащие знаки называют полиномами.
Полином вида: , где есть либо 1, либо переменная, либо конъюнкция различных переменных, при , называется полиномом Жегалкина.
Теорема.
Любая булева функция может быть представлена полиномом Жегалки- на
где ki – коэффициенты, принимающие значения 0 или 1: .
3.2 Класс линейных функций (К Л)
Булева функция называется линейной, если она представима полиномом первой степени
.
Количество линейных функций равно , где п – число перемен-ных.
Для п = 2 их 8:
3.3 Класс функций, сохраняющих ноль (К 0)
Если булева функция на нулевом наборе переменных равна нулю, то говорят, что функция сохраняет ноль:
3.4 Класс функций, сохраняющих единицу (К 1)
Если булева функция на единичном наборе переменных равна единице, то говорят, что функция сохраняет единицу:
3.5 Класс монотонных функций (К м)
Булева функция называется монотонной, если для любых двоичных наборов из того, что , выполняется неравенство: .
3.6 Класс самодвойственных функций (К с)
Булева функция называется двойственной для функции , если таблицу истинности для функции можно получить из таблицы для функции f, заменив в значениях аргумента функции 0 на 1 и 1 на 0, т.е. имеет место равенство
Например, конъюнкция и дизъюнкция двойственны друг другу, отрицание двойственно самому себе.
Функция, совпадающая со своей двойственной, называется самодвойственной.
Самодвойственная функция на противоположных наборах и принимает противоположные значения. Противоположными являются наборы, сумма десятичных эквивалентов которых равна 2n – 1, где п – количество переменных, от которых зависит функция.
Распределение булевых функций двух переменных по классам
Функция | К л | К 0 | К 1 | К м | К с |
f 0 | * | * | * | ||
f 1 | * | * | * | ||
f 2 | * | ||||
f 3 | * | * | * | * | * |
f 4 | * | ||||
f 5 | * | * | * | * | * |
f 6 | * | * | |||
f 7 | * | * | * | ||
f 8 | - | - | - | - | - |
f 9 | * | * | |||
f 10 | * | * | |||
f 11 | * | ||||
f 12 | * | * | |||
f 13 | * | ||||
f 14 | - | - | - | - | - |
f 15 | * | * | * |
... утверждают или отрицают какие-либо отношения между объектами и явлениями реальной действительности. 3.Математическая логика и «Здравый смысл» в XXI веке. Логика - не только сугубо математическая, но также и философская наука. В XX веке эти две взаимосвязанные ипостаси логики оказались разведенными в разные стороны. С одной стороны логика понимается как наука о законах правильного мышления, ...
... занимательности. Упражнения однотипны. Поэтому просто необходимо дополнять данные в учебнике упражнения дополнительными заданиями развивающего характера. Глава II. Методика изучения элементов алгебры и математической логики. § 1. Методика изучения числовых выражений, выражений с переменными, числовых равенств и неравенств, уравнений. Изучение числовых выражений, равенств и неравенств, а ...
... утверждение "Я никогда не пользуюсь методами математической логики". Очевидно, что они противоречат друг другу, однако они вполне могут оказаться одновременно ложными. Например, если вы специалист по математической логике, то вы должны часто пользоваться её методами, но вряд ли они нужны вам каждый день вашей жизни. Закон исключенного третьего предназначен для использовании в области точных наук, ...
... постулаты D (то есть аксиомы Ax Ì FÍ A* и дедуктивные средства P Ì Fn+1), то говорят о построении теории как формальной системы F.S. = <L, D> = <A, S, Ax, P>Þ <A, F, Ax, P>. Другим подходом к построению математической логике является - содержательный, то есть неформальный. В этом случае аксиомы и дедуктивные средства явным образом не определяются (то есть ...
0 комментариев