§1. Топологические пространства
(предварительные сведения)
1.1. Непрерывные отображения топологических
пространств
Пусть Х и Y топологические пространства.
Определение 1. Отображение f : Х→Y называется непрерывным, если у всякого множества О, открытого в пространстве Y, полный прообраз f –1(О) открыт в пространстве Х.
Замечание 1. Для любого подмножества А пространства Y и отображения f: X→Y справедливо следующее равенство:
(1).
Теорема 1.1. Отображение f : X→Y является непрерывным тогда и только тогда, когда у всякого множества F, замкнутого в Y, полный прообраз f –1(F) замкнут в Х.
Доказательство. Необходимость. Пусть отображение f : X→Y является непрерывным, т.е. для любого множества О, открытого в Y, прообраз f –1(O) открыт в Х, и пусть F произвольное замкнутое в Y множество. Тогда множество CF открыто в Y, и множество открыто в Х, в силу непрерывности отображения f и равенства (1). Следовательно, множество f –1(F) замкнуто в Х.
Достаточность. Пусть для любого множества F, замкнутого в Y, полный прообраз f –1(F) замкнут в Х. Рассмотрим произвольное открытое в Y множество О. Тогда множество CO будет замкнутым в Y. Поэтому замкнутое в Х множество. Следовательно, множество открыто в Х. Таким образом, для любого множества О, открытого в Y, полный прообраз открыт в Х и отображение f : X→Y непрерывное по определению.
1.2. Связность топологических пространств
Определение 4. Топологическое пространство Х называется несвязным, если его можно разбить на два непустых непересекающихся открытых множества:
Х = О1 О2.
Определение 5. Пространство Х называется связным, если такого разбиения не существует.
Заметим, что если несвязное пространство Х разбито на два непустых открытых множества О1 и О2, не имеющих общих точек, то О1 = CO2 и O2 = CO1. Поэтому можно дать другое определение связного пространства:
Определение 6. Топологическое пространство Х называется связным, если в нём одновременно открытым и замкнутым множеством является лишь само пространство или пустое множество.
Определение 7. Множество Н в топологическом пространстве Х называется связным, если оно является связным пространством относительно индуцированной топологии.
Теорема 1.2. Для топологического пространства Х следующие условия эквивалентны:
(1) существуют непустые открытые множества О1 и О2, для которых О1 ∩ О2 = Æ и О1 О2 = Х;
(2) существуют непустые замкнутые множества F1 и F2, для которых F1 ∩ F2 = Æ и F1 F2 = Х;
(3) в Х существует нетривиальное открыто-замкнутое множество G;
(4) существует непрерывная сюръективная функция φ : Х ® {1, 2}.
Доказательство. Из (1) следует (2). Пусть О1 и О2 непустые открытые множества, для которых О1 ∩ О2 = Æ и О1 О2 = Х. Рассмотрим множества F1 = СО1 и F2 = СО2. Они являются непустыми замкнутыми множествами, причём F1 ∩ F2 = Æ и F1 F2 = Х.
Из (2) следует (3). Пусть F1 и F2 непустые замкнутые множества, для которых F1 ∩ F2 = Æ и F1 F2 = Х. Рассмотрим множество G = F1 Ì Х. Множество F1 замкнутое по условию и открытое, как дополнение до замкнутого множества F2 (F1 = CF2). Поэтому множество G = F1 является нетривиальным открыто-замкнутым множеством в Х.
Из (3) следует (4). Пусть G нетривиальное открыто-замкнутое множество в Х. Тогда множество Q = CG тоже нетривиальное открыто-замкнутое в Х.
Рассмотрим функцию φ : Х ® {1, 2}, при которой
φ(х) =
Функция φ является непрерывной и сюръективной, т.к. для любых элементов 1 и 2 множества {1, 2} прообразы их соответственно равны множествам G и Q, открытым в Х.
Из (4) следует (1). Пусть φ : Х ® {1, 2} – непрерывная сюръективная функция и пусть множество M = {1, 2}, т.е. φ(Х) = М. Множества A = {1} и B = {2} – непустые, непересекающиеся открытые в М и . Функция φ сюръективная, поэтому справедливо следующее равенство:
Х = φ –1(М) = φ –1(А В) = φ –1(А) φ –1(В),
причём φ –1(А) и φ –1(В) непустые непересекающиеся множества. В силу того, что функция φ непрерывная, множества О1 = φ –1(А) и О2 = φ –1(В) непустые, непересекающиеся открытые в Х и Х = О1 О2 .
Теорема 1.3. Пусть в топологическом пространстве Х даны два дизъюнктных замкнутых множества F1 и F2 и непустое связное множество М, содержащееся в объединении F1 F2. Тогда М содержится только в одном из множеств, входящих в объединение, т.е. либо в F1, либо в F2.
Доказательство. Пусть F1 и F2 дизъюнктные замкнутые в Х множества и непустое связное множество М Í F1 F2. Тогда
М = (М ∩ F1) (M ∩ F2).
Так как множества F1 и F2 замкнутые в Х, то множества М ∩ F1 и M ∩ F2 замкнутые в М. Но множество М связно, т.е. его нельзя разбить на два непустых непересекающихся замкнутых множества, поэтому одно из множеств, например M ∩ F2, пустое. Тогда
М = М ∩ F1 Í F1.
Аналогично доказывается
Теорема 1.4. Если связное множество М содержится в объединении двух дизъюнктных открытых множеств О1 и О2 топологического пространства Х, то оно целиком содержится только в одном из множеств, входящих в объединение.
Теорема 1.5. Пусть f : Х→Y непрерывное отображение и f (X) = Y. Тогда если Х связно, то Y связно.
Доказательство от противного. Предположим, что пространство Y несвязно. Тогда оно разбивается на два непустых открытых дизъюнктных множества
Y = O1 O2.
В силу того, что f непрерывное отображение и f (X) = Y, прообразы G1 = f –1(O1) и G2 = f –1(O2) будут непустыми дизъюнктными открытыми множествами, которые в сумме дают всё пространство Х, что противоречит его связности.
... всех расстояний между точками множества и обозначается . . Если , то множество называют неограниченным. Определение. Метрика метрического пространства называется ограниченной, если . Свойство 6. Любое метризуемое топологическое пространство может быть метризовано ограниченной метрикой. Доказательство. Пусть метрика порождает топологию топологического пространства . Положим для ...
... подытожим: движение человеческого тела находится в сложном структурном отношении со следующими тремя топологическими конструкциями: движение в пространстве, пространство движения и геометрический образ движения, определяющий само движение и одновременно определяемый им. Изложенный топологический подход следует понимать не как обращение к математизации, формализации и моделированию движения, а, ...
... называется нормальным, или Т4-пространством, если для каждой пары непересекающихся замкнутых множеств А и В существуют непересекающиеся открытые множества U и V такие, что АU, BV. ГЛАВА 2. Линейно упорядоченное пространство ординальных чисел. §1.ВПОЛНЕ УПОРЯДОЧЕННЫЕ МНОЖЕСТВА И ИХ СВОЙСТВА. Рассмотрим вполне упорядоченные множества и их свойства. Предложение 1.1. Всякое ...
... компактным, если в любом его открытом покрытии можно выбрать конечное подпокрытие. Определение: Топологическое пространство называется - пространством, если для любых двух различных его точек существует открытое множество, содержащее ровно одну из этих точек.Глава 2. 1. Верхние полурешётки. Определение: Ч.у. множество называется верхней полурешёткой, если sup{a,b} существует для ...
0 комментариев