1.3. Компактность топологических пространств
Определение 8. Топологическое пространство называется компактным, если всякое покрытие этого пространства открытыми множествами содержит конечное подпокрытие.
Определение 9. Множество А в топологическом пространстве Х называется компактным, если оно компактно в индуцированной топологии как подпространство.
Теорема 1.6. Подмножество А топологического пространства Х компактно тогда и только тогда, когда из любого его покрытия множествами, открытыми в Х, можно выбрать конечное подпокрытие.
Теорема 1.7. Замкнутое подмножество А компактного пространства Х компактно.
Доказательство. В силу теоремы 1.6, достаточно из произвольного покрытия  множества А открытыми в Х множествами выбрать конечное подпокрытие. Для этого добавим к этим множествам открытое множество Х \ А и получим открытое покрытие всего пространства Х. В силу компактности пространства Х, из этого покрытия можно выделить конечное подпокрытие, причём мы всегда можно считать, что в это подпокрытие входит множество Х \ А. Пусть, например,
 множества А открытыми в Х множествами выбрать конечное подпокрытие. Для этого добавим к этим множествам открытое множество Х \ А и получим открытое покрытие всего пространства Х. В силу компактности пространства Х, из этого покрытия можно выделить конечное подпокрытие, причём мы всегда можно считать, что в это подпокрытие входит множество Х \ А. Пусть, например, 
 .
.
Очевидно, что множества  образуют искомое конечное подпокрытие множества А.
 образуют искомое конечное подпокрытие множества А. 
Определение 10. Топологическое пространство называется хаусдорфовым, если любые две его различные точки обладают непересекающимися окрестностями.
Теорема 1.8. Компактное подмножество А хаусдорфова пространства Х замкнуто.
Теорема 1.9. Непрерывный образ компактного пространства компактен, т.е. если f : Х→Y – непрерывное отображение и пространство Х компактно, то и множество f (Х) компактно.
Доказательство теорем 1.6 – 1.9 можно найти в [2].
§2. Связность непрерывных отображений
2.1. Определение связности отображения и простейшие свойства
Пусть f : Х→Y – непрерывное отображение. Для открытого в Y множества U и точки yÎY прообраз f –1(U) называется трубкой (над U), а прообраз f –1(y) называется слоем (над точкой y).
Определение 11.. Непрерывное отображение f : Х→Y называется несвязным над точкой yÎY, если существует такая окрестность Oy точки y, что трубка f –1(U) является несвязной над каждой окрестностью U Í Oy точки y.
Замечание 2. В данном определении достаточно рассматривать только связные окрестности U Í Oy, т.к., если U = U1  U2, где U1, 
U2 – непустые дизъюнктные открытые в U (а значит и в Y ) множества, то
 U2, где U1, 
U2 – непустые дизъюнктные открытые в U (а значит и в Y ) множества, то
f –1(U) = f –1(U1)  f  –1(U2),    f –1(U1) ∩ f –1(U2) = Æ,
 f  –1(U2),    f –1(U1) ∩ f –1(U2) = Æ,
т.е. f –1(U) несвязно автоматически.
Определение 12. Непрерывное отображение f : Х→Y называется связным над точкой yÎY, если оно не является несвязным над точкой y, т.е. для любой окрестности Oy точки y существует такая связная окрестность U Í Oy точки y, что трубка f –1(U) связна.
Определение 13. Непрерывное отображение f : Х→Y называется связным, если оно связно над каждой точкой y Î Y.
Теорема 2.1 (критерии несвязности). Пусть отображение f : Х→Y непрерывно и точка y Î Y. Тогда следующие условия эквивалентны:
(1) отображение f несвязно над точкой y Î Y;
(2) существует такая окрестность Oy точки y Î Y, что каждая трубка f –1(U) над окрестностью U Í Oy точки у распадается на два дизъюнктных непустых открытых в этой трубке множества;
(3) существует такая окрестность Oy точки y Î Y, что каждая трубка f –1(U) над окрестностью U Í Oy точки у распадается на два дизъюнктных непустых замкнутых в этой трубке множества;
(4) существует такая окрестность Oy точки y Î Y, что в каждой трубке f –1(U) над окрестностью U Í Oy точки у существует нетривиальное открыто-замкнутое в этой трубке множество;
(5) существует такая окрестность Oy точки y Î Y, что для каждой трубки f –1(U) над окрестностью U Í Oy точки у существует непрерывная сюръективная функция φ : f –1(U) ® {1, 2}.
Доказательство. Из (1) следует (2). Пусть непрерывное отображение f : Х→Y несвязное над точкой y Î Y, т.е. существует такая окрестность Oy точки y, что трубка f –1(U) является несвязной над каждой окрестностью U Í Oy точки y. Таким образом, трубка f –1(U) над окрестностью U Í Oy распадается на два дизъюнктных непустых открытых в этой трубке множества, т.е.
f –1(U) = О1  О2, 
О1 ∩ О2 = Æ.
 О2, 
О1 ∩ О2 = Æ.
Из (2) следует (3). Пусть трубка f –1(U) распадается на два дизъюнктных непустых открытых в этой трубке множества. Тогда, по теореме 1.2, трубка f –1(U) распадается на два дизъюнктных непустых замкнутых в этой трубке множества.
Из (3) следует (4). Пусть трубка f –1(U) распадается на два дизъюнктных непустых замкнутых в этой трубке множества. Тогда, по теореме 1.2, в трубке f –1(U) существует нетривиальное открыто-замкнутое в этой трубке множество.
Из (4) следует (5). Пусть в трубке f –1(U) существует нетривиальное открыто-замкнутое в этой трубке множество. Тогда, по теореме 1.2, для трубки f –1(U) существует непрерывная сюръективная функция φ : f –1(U) ® {1, 2}.
Из (5) следует (1). Пусть существует такая окрестность Oy точки y Î Y, что для трубки f –1(U) над некоторой окрестностью U Í Oy существует непрерывная сюръективная функция φ : f –1(U) ® {1, 2}. Тогда, по теореме 1.2, трубка f –1(U) распадается на два дизъюнктных непустых открытых в этой трубке множества. Отсюда, по определению несвязного над точкой отображения, следует, что отображение f несвязно над точкой y Î Y.
Определение 14. Отображение f : Х→Y называется послойно связным, если каждый слой f –1(y), где y Î Y, этого отображения является связным множеством.
Теорема 2.2 (о сохранении связности). Пусть отображения f : X ® Y и g : Z ® Y непрерывные и существует непрерывное сюръективное отображение φ : X ® Z, при котором f = g  φ. Тогда, если отображение f связно над точкой y Î Y (слой f –1(y) связен), то и отображение g связно над точкой y Î Y (слой g –1(y) связен). В частности, если отображнение f связно (послойно связно), то и отображение g связно (послойно связно).
 φ. Тогда, если отображение f связно над точкой y Î Y (слой f –1(y) связен), то и отображение g связно над точкой y Î Y (слой g –1(y) связен). В частности, если отображнение f связно (послойно связно), то и отображение g связно (послойно связно).
Доказательство. Пусть отображения f : X ®Y связное над точкой y Î Y, тогда для любой окрестности Oy точки y существует связная окрестность U Í Oy точки y, трубка над которой f –1(U) связна. Отображение φ непрерывное, значит (по теореме 1.5) образ связного множества f –1(U) (связного слоя f –1(y)) связен, т.е. множество φ(f –1(U)) (множество φ( f –1(y))) – связное.
Предположим, что отображение g несвязно над точкой y Î Y, т.е. существует такая связная окресность Oy точки y, что трубка g –1(U) является несвязной над каждой окрестностью U Í Oy точки y. (Предположим, что слой g–1(y) несвязен над точкой y Î Y).
По условию, f = g  φ, следовательно,
 φ, следовательно, 
f –1(U) = (g  φ) –1(U) = φ –1(g–1(U)).
 φ) –1(U) = φ –1(g–1(U)).
Отсюда,
φ(f –1(U)) = φ(φ–1(g–1(U))) =g–1(U)
(для слоя φ( f –1(y)) = g–1(y)). Получили противоречие, т.к. множество φ( f –1(U)) связное (слой φ( f –1(y)) связен), а множество g–1(U) (слой g–1(y)) – нет.
Пусть отображнение f связно (послойно связное), тогда, по определению 10 (11), оно связно над каждой точкой y Î Y (каждый слой f –1(y) связен). Возьмём произвольную точку y Î Y. Если отображение f связно над этой точкой y Î Y (слой f –1(y) связен), то и отображение g связно над этой же точкой (слой g–1(y) связен). В силу произвольности выбора точки y, заключаем, что отображение g связно над каждой точкой y Î Y (послойно связно).
... всех расстояний между точками множества и обозначается . . Если , то множество называют неограниченным. Определение. Метрика метрического пространства называется ограниченной, если . Свойство 6. Любое метризуемое топологическое пространство может быть метризовано ограниченной метрикой. Доказательство. Пусть метрика порождает топологию топологического пространства . Положим для ...
... подытожим: движение человеческого тела находится в сложном структурном отношении со следующими тремя топологическими конструкциями: движение в пространстве, пространство движения и геометрический образ движения, определяющий само движение и одновременно определяемый им. Изложенный топологический подход следует понимать не как обращение к математизации, формализации и моделированию движения, а, ...
... называется нормальным, или Т4-пространством, если для каждой пары непересекающихся замкнутых множеств А и В существуют непересекающиеся открытые множества U и V такие, что АU, BV. ГЛАВА 2. Линейно упорядоченное пространство ординальных чисел. §1.ВПОЛНЕ УПОРЯДОЧЕННЫЕ МНОЖЕСТВА И ИХ СВОЙСТВА. Рассмотрим вполне упорядоченные множества и их свойства. Предложение 1.1. Всякое ...
... компактным, если в любом его открытом покрытии можно выбрать конечное подпокрытие. Определение: Топологическое пространство называется - пространством, если для любых двух различных его точек существует открытое множество, содержащее ровно одну из этих точек.Глава 2. 1. Верхние полурешётки. Определение: Ч.у. множество называется верхней полурешёткой, если sup{a,b} существует для ...
0 комментариев