6.  СОСТАВИМ СВОДНУЮ ТАБЛИЦУ ВЫЧИСЛЕНИЙ (табл. 14)

Таблица 14

Параметры Модель
линейная степенная

 

Коэффициент множественной

корреляции

0,8235 0,8429

Коэффициент

детерминации

0,6782 0,7106

F – критерий

Фишера

7,375 8,592

Средняя

относительная ошибка

аппроксимации, %

3,53 3,42

В целом модели имеют примерно одинаковые характеристики. Но лучшей считается степенная модель, т.к значение коэффициента корреляции, индекса детерминации, F – критерия Фишера немного больше, а средняя относительная ошибка аппроксимации немного меньше, чем у линейной модели.

7.  НАЙДЕМ ЧАСТНЫЕ КОЭФФИЦИЕНТЫ ЭЛАСТИЧНОСТИ И β – КОЭФФИЦИЕНТЫ

Для нахождения частных коэффициентов эластичности составим частные уравнения регрессии, т.е. уравнения регрессии, которые связывают результативный признак с соответствующим фактором х при закреплении других учитываемых во множественной регрессии на среднем уровне.

и т.д.

Результаты расчетов представлены в таблице 15.


Таблица 15

Вспомогательная таблица для вычисления частных коэффициентов эластичности

Y X1 X2 Э(ух1) Э(ух2)
3,0 1,1 0,4 0,524 -0,135
2,9 1,1 0,4 0,524 -0,135
3,0 1,2 0,7 0,545 -0,262
3,1 1,4 0,9 0,583 -0,364
3,2 1,4 0,9 0,583 -0,364
2,8 1,4 0,8 0,583 -0,311
2,9 1,3 0,8 0,565 -0,311
3,4 1,6 1,1 0,615 -0,484
3,5 1,3 0,4 0,565 -0,135
3,6 1,4 0,5 0,583 -0,174

Бета коэффициент рассчитываем по формуле:

 - среднее квадратическое отклонение.

Необходимые вычисления для расчета СКО представлены в таблице 9.

Если объем капиталовложений увеличить на величину своего СКО, т.е. 0,147 млн. руб., то выручка предприятия увеличится на 1,302 величины своего СКО, т.е. на 1,302 * 0,262 = 0,341 млн. руб.

Если основные производственные фонды увеличить на величину своего СКО, т.е. на 0,239 млн. руб., то выручка предприятия уменьшится на 1,068 своего СКО, т.е. на 1,068 * 0,262 = 0,280 млн. руб.

8.  ПО ЛИНЕЙНОЙ МОДЕЛИ РЕГРЕССИИ СДЕЛАЕМ ПРОГНОЗ НА СЛЕДУЮЩИЕ ДВА ГОДА показателя у (выручка), в зависимости от х1 (объема капиталовложений) и х2 (основных производственных фондов).

Прогнозные значения факторов можно получить, используя метод прогнозирования с помощью среднего абсолютного прироста:

,

где  - средний абсолютный прирост, рассчитываемый по формуле:

;

k – период упреждения;

n – количество наблюдений.

, тогда

Х1, 11 = 1,4 + 1 ∙ 0,0333 = 1,4333 (млн.руб.)

Х1, 12 = 1,4 + 2 ∙ 0,0333 = 1,4667(млн.руб.)

Х2, 11 = 0,5 + 1 ∙ 0,0111 = 0,5111

Х2, 12 = 0,5 + 2 ∙0,0111 = 0,5222

Составляем вектор прогнозных значений факторов:

.

Вычислим точечные прогнозы поведения выручки предприятия на моменты времени t = 11 и t = 12. Для этого подставим прогнозные значения факторов в уравнение регрессии.

 (млн. руб.)

 (млн. руб.)

Для получения интервального прогноза  рассчитываем доверительные интервалы, используя величину отклонения от линии регрессии (U):

,

 

Операции с матрицами осуществим в среде Excel с помощью встроенных математических функций МУНОЖ и МОБР.

Среднее квадратическое отклонение расчетных значений от фактических:

Коэффициент Стьюдента tα для m = 10 – 2 – 1 = 7 степеней свободы и уровня значимости α = 0,05 равен 2,36.

U(11) = 0,1773 ∙ 2.36 ∙ 0,61610,5 = 0,329

U(11) = 0,1773 ∙ 2.36 ∙ 0.74810,5 = 0,362

Результаты вычислений представим в виде таблицы.

Таблица 16

Шаг

Точечный прогноз,

млн. руб.

Нижняя граница,

млн. руб.

Верхняя граница,

млн. руб.

11 3,6121 3,2829 3,9412
12 3,6763 3,3136 4,0390

Список литературы:

1.  Доугерти К. Введение в эконометрику. – М.: Инфра – М, 2001. – 402 с.

2.  Катышев П. К., Пересецкий А. А. Сборник задач к начальному курсу эконометрики. – М.: Дело, 1999. – 72 с.

3.  Практикум по эконометрике: Учеб. пособие; Под ред. И. И. Елисеевой. – М.: Финансы и статистика, 2001. – 192 с.

4.  Тутыгин А.Г., Амбросевич М.А., Третьяков В.И. Эконометрика. Краткий курс лекций. Учебное пособие. – М.-Архангельск, Издательский дом «Юпитер», 2004. – 54 с.

5.  Эконометрика: Учеб. пособие; Под ред. И. И. Елисеевой. – М.: Финансы и статистика, 2001. –245 с.


Информация о работе «Построение математических моделей»
Раздел: Математика
Количество знаков с пробелами: 24151
Количество таблиц: 17
Количество изображений: 8

Похожие работы

Скачать
20362
3
3

... часто представляются в виде алгоритма, в котором задаются математические соотношения, связывающие исходные данные и результат. В этом случае говорят о построении математической модели задачи. Обычно модель возникает как необходимый этап решения конкретной задачи. Однако в дельнейшем может происходить обособление модели от задачи, и модель начинает жить самостоятельно. Примером может служить сюжет ...

Скачать
7938
1
0

... посадка невозможна, в каком из реализуемых случаев расход топлива меньше. Получить программу оптимального управления, когда до некоторого момента t1 управление отсутствует u*=0, а начиная с t=t1, управление равно своему максимальному значению u*=umax, что соответствует минимальному расходу топлива. 6.)  Решить каноническую систему уравнений, рассматривая ее для случаев, когда  и управление ...

Скачать
13893
1
0

... к составлению математических моделей. Если математическая модель - это диагноз заболевания, то алгоритм - это метод лечения. Можно выделить следующие основные этапы операционного исследования: наблюдение явления и сбор исходных данных; постановка задачи; построение математической модели; расчет модели; тестирование модели и анализ выходных данных. Если полученные результаты не удовлетворяют ...

Скачать
7193
2
0

... математических построений по аналогии с [3] выявляет в плоском приближении продольно-скалярную электромагнитную волну с электрической -  (28) и магнитной  (29) синфазными составляющими. Математическая модель безвихревой электродинамики характеризуется скалярно-векторной структурой своих уравнений. Основополагающие уравнения безвихревой электродинамики сведены в таблице 1. Таблица 1 , ...

0 комментариев


Наверх