1.1   Иррациональные уравнения

Иррациональные уравнения часто встречаются на вступительных экзаменах по математике, так как с их помощью легко диагностируется знание таких понятий, как равносильные преобразования, область определения и другие. Методы решения иррациональных уравнений, как правило, основаны на возможности замены (с помощью некоторых преобразований) иррационального уравнения рациональным, которое либо равносильно исходному иррациональному уравнению, либо является его следствием. Чаще всего обе части уравнения возводят в одну и ту же степень. Эквивалентность не нарушается при возведении обеих частей в нечетную степень. В противном случае требуется проверка найденных решений или оценка знака обеих частей уравнения. Но существуют и другие приемы, которые могут оказаться более эффективными при решении иррациональных уравнений. Например, метод тригонометрической подстановки.

Пример 1. Решите уравнение

 [12].

Решение с помощью тригонометрической подстановки

Так как , то . Поэтому можно положить . Уравнение примет вид

.

Положим , где , тогда

.

.

.

Ответ: .

Алгебраическое решение

.

Так как , то . Значит, , поэтому можно раскрыть модуль

.

Ответ: .

Решение уравнения алгебраическим способом требует хорошего навыка проведения тождественных преобразований и грамотного обращения с равносильными переходами. Но в общем оба приема решения равноценны.

Пример 2. Решите уравнение

 [14].

Решение с помощью тригонометрической подстановки

Область определения уравнения задается неравенством , что равносильно условию , тогда . Поэтому можно положить . Уравнение примет вид

.

Так как , то . Раскроем внутренний модуль

.

Положим , тогда

.

Условию  удовлетворяют два значения  и .

.

.

Ответ: .

Алгебраическое решение

.

Возведем в квадрат уравнение первой системы совокупности, получим

.

Пусть , тогда . Уравнение перепишется в виде

.

Проверкой устанавливаем, что  – корень, тогда делением многочлена  на двучлен получаем разложение правой части уравнения на множители

.

От переменной  перейдем к переменной , получим

.

Условию  удовлетворяют два значения

.

Подставив эти значения в исходное уравнение, получаем, что  – корень.

Решая аналогично уравнение второй системы исходной совокупности, находим, что  тоже корень.

Ответ: .

Если в предыдущем примере алгебраическое решение и решение с помощью тригонометрической подстановки были равноценны, то в данном случае решение подстановкой выгоднее. При решении уравнения средствами алгебры приходится решать совокупность из двух уравнений, то есть дважды возводить в квадрат. После этого неравносильного преобразования получаются два уравнения четвертой степени с иррациональными коэффициентами, избавиться от которых помогает замена. Еще одна трудность – проверка найденных решений подстановкой в исходное уравнение.

Пример 3. Решите уравнение

 [31].

Решение с помощью тригонометрической подстановки

Так как , то . Заметим, что отрицательное значение неизвестного не может быть решением задачи. Действительно, преобразуем исходное уравнение к виду

.

Множитель в скобках в левой части уравнения положительный, правая часть уравнения тоже положительная, поэтому множитель  в левой части уравнения не может быть отрицательным. Вот почему , тогда , поэтому можно положить  Исходное уравнение перепишется в виде

.

Так как , то  и . Уравнение примет вид

.

Пусть . Перейдем от уравнения к равносильной системе

.

Числа  и  являются корнями квадратного уравнения

.

.

Ответ: .

Алгебраическое решение Возведем обе части уравнения в квадрат

.

Введем замену , тогда уравнение запишется в виде

.

Второй корень является лишним, поэтому рассмотрим уравнение

.

Так как , то .

Ответ: .

В данном случае алгебраическое решение в техническом плане проще, но рассмотреть приведенное решение с помощью тригонометрической подстановки следует обязательно. Это связано, во-первых, с нестандартностью самой подстановки, которая разрушает стереотип, что применение тригонометрической подстановки возможно лишь, когда . Оказывается, если  тригонометрическая подстановка тоже находит применение. Во-вторых, представляет определенную трудность решение тригонометрического уравнения , которое сводится введением замены к системе уравнений. В определенном смысле эту замену тоже можно считать нестандартной, а знакомство с ней позволяет обогатить арсенал приемов и методов решения тригонометрических уравнений.

Пример 4. Решить уравнение

 [4].

Решение с помощью тригонометрической подстановки

Так как переменная  может принимать любые действительные значения, положим . Тогда

,

,так как .

Исходное уравнение с учетом проведенных преобразований примет вид

.

Так как , поделим обе части уравнения на , получим

.

Пусть , тогда . Уравнение примет вид

.

.

Учитывая подстановку , получим совокупность из двух уравнений

.

Решим каждое уравнение совокупности по отдельности.

1) .

.

 не может быть значением синуса, так как  для любых значений аргумента.

.

Откуда

.

Так как  и правая часть исходного уравнения положительна, то . Из чего следует, что .

2) .

.

Это уравнение корней не имеет, так как .

Итак, исходное уравнение имеет единственный корень

.

Ответ: .

Алгебраическое решение

Данное уравнение легко «превратить» в рациональное уравнение восьмой степени возведением обеих частей исходного уравнения в квадрат. Поиск корней получившегося рационального уравнения затруднен, и необходимо обладать высокой степенью изобретательности, чтобы справиться с задачей. Поэтому целесообразно знать иной способ решения, менее традиционный. Например, подстановку , предложенную И. Ф. Шарыгиным [57].

Положим , тогда

Преобразуем правую часть уравнения :

.

С учетом преобразований уравнение  примет вид

.

Введем замену , тогда

.

Второй корень является лишним, поэтому , а .

Ответ: .

Если заранее не известна идея решения уравнения , то решать стандартно возведением обеих частей уравнения в квадрат проблематично, так как в результате получается уравнение восьмой степени , найти корни которого чрезвычайно сложно. Решение с помощью тригонометрической подстановки выглядит громоздким. Могут возникнуть трудности с поиском корней уравнения , если не заметить, что оно является возвратным. Решение указанного уравнения происходит с применением аппарата алгебры, поэтому можно сказать, что предложенное решение является комбинированным. В нем сведения из алгебры и тригонометрии работают совместно на одну цель – получить решение. Также решение указанного уравнения требует аккуратного рассмотрения двух случаев. Решение заменой технически проще и красивее, чем с помощью тригонометрической подстановки. Желательно, чтобы учащиеся знали такой способ замены и применяли его для решения задач.

Подчеркнем, что применение тригонометрической подстановки для решения задач должно быть осознанным и оправданным. Использовать подстановку целесообразно в тех случаях, когда решение другим способом сложнее или вовсе невозможно. Приведем еще один пример, который, в отличие от предыдущего, проще и быстрее решается стандартным способом.

Пример 5. Решить уравнение

 [51].

Решение с помощью тригонометрической подстановки

Так как переменная  может принимать любые действительные значения, можно положить . Уравнение примет вид

.

В силу того, что , можно раскрыть модуль

.

Так как , то .

Ответ: .

Алгебраическое решение

Проверкой убеждаемся, что  – корень.

Ответ: .

 



Информация о работе «Применение тригонометрической подстановки для решения алгебраических задач»
Раздел: Математика
Количество знаков с пробелами: 70384
Количество таблиц: 2
Количество изображений: 19

Похожие работы

Скачать
43593
0
0

... решения от численных методов расчёта. Для определения корней уравнения не требуется знания теорий групп Абеля, Галуа, Ли и пр. и применения специальной математической терминологии: колец, полей, идеалов, изоморфизмов и т.д. Для решения алгебраического уравнения n - ой степени нужно только умение решать квадратные уравнения и извлекать корни из комплексного числа. Корни могут быть определены с ...

Скачать
73526
4
6

... комплект под редакцией А.Г. Мордковича, хотя оставлять без внимания остальные учебники тоже не стоит. § 3. Методика преподавания темы «Тригонометрические функции» в курсе алгебры и начал анализа В изучении тригонометрических функций в школе можно выделить два основных этапа: ü Первоначальное знакомство с тригонометрическими функциями ...

Скачать
352659
353
269

... для графа на рис. 3, приняв, что дерево образовано ветвями 2, 1 и 5 Ответ: B= Решить задачу 5, используя соотношения (8) и (9).  Теория / ТОЭ / Лекция N 3. Представление синусоидальных величин с помощью векторов и комплексных чисел. Переменный ток долгое время не находил практического ...

Скачать
89437
1
28

... сформулированной гипотезы необходимо было решить следующие задачи: 1.  Выявить роль тригонометрических уравнений и неравенств при обучении математике; 2.  Разработать методику формирования умений решать тригонометрические уравнения и неравенства, направленную на развитие тригонометрических представлений; 3.  Экспериментально проверить эффективность разработанной методики. Для решения ...

0 комментариев


Наверх