1. Вспомнить теоретические основы введения тригонометрической подстановки.
2. Рассмотреть применение тригонометрической подстановки для решения иррациональных уравнений в случае, когда множество значений переменной ограничено.
3. Провести сравнительный анализ решения задач с помощью тригонометрической подстановки и без нее.
Содержание:
1. Решить уравнение .
2. Решите уравнение .
3. Решить уравнение .
4. Решить уравнение .
Домашнее задание:
1. Решить уравнение .
2. Решить уравнение .
3. Решить уравнение .
Литература: [3], [4], [12], [14], [23] – [25], [31], [32], [37] – [39], [43], [44], [47] – [51], [57].
Занятие №3
Тема: применение тригонометрической подстановки для решения систем уравнений.
Цели:
1. Рассмотреть применение тригонометрической подстановки для решения сложных, олимпиадных систем.
2. Провести сравнительный анализ решения задач с помощью тригонометрической подстановки и без нее, где это возможно.
3. Привести пример системы, решить которую без тригонометрической подстановки не возможно.
Содержание:
1. Решить систему уравнений .
2. Решить систему .
3. Выяснить, сколько решений имеет система уравнений .
4. При каких значениях параметра система имеет решение .
Домашнее задание:
1. Решить систему .
2. Решить систему .
3. Сколько решений имеет система уравнений .
Литература: [3], [6] – [8], [10], [12], [14], [18], [24], [30], [43].
Занятие №4
Тема: применение тригонометрической подстановки для решения задач на отыскание наибольшего и наименьшего значений функции.
Цели:
1. Вспомнить основные методы решения задач на отыскание наибольшего и наименьшего значений функции.
2. Показать, как метод тригонометрической подстановки применяется для решения задач на нахождение наибольшего и наименьшего значений функции.
3. Провести сравнительный анализ решения задач с помощью тригонометрической подстановки и без нее.
Содержание:
1. Найти наибольшее и наименьшее значение выражения, если .
2. Найти наибольшее и наименьшее значение выражения, если .
3. Среди всех решений системы найдите такие, при которых выражение принимает наибольшее значение .
4. Выяснить, при каких значениях параметра неравенство имеет решения .
Домашнее задание:
1. Найти наибольшее и наименьшее значение выражения , если .
2. Найти наибольшее и наименьшее значение выражения, если .
3. Среди всех решений системы найти такие, при каждом из которых выражение принимает наименьшее значение
.
Литература: [4], [14], [22], [24], [31], [42].
[1] Пример 2 пункта 1.2 Рациональные уравнения
[2] Здесь и далее процент подсчитывается от количества учащихся, выбравших указанный способ решения
... решения от численных методов расчёта. Для определения корней уравнения не требуется знания теорий групп Абеля, Галуа, Ли и пр. и применения специальной математической терминологии: колец, полей, идеалов, изоморфизмов и т.д. Для решения алгебраического уравнения n - ой степени нужно только умение решать квадратные уравнения и извлекать корни из комплексного числа. Корни могут быть определены с ...
... комплект под редакцией А.Г. Мордковича, хотя оставлять без внимания остальные учебники тоже не стоит. § 3. Методика преподавания темы «Тригонометрические функции» в курсе алгебры и начал анализа В изучении тригонометрических функций в школе можно выделить два основных этапа: ü Первоначальное знакомство с тригонометрическими функциями ...
... для графа на рис. 3, приняв, что дерево образовано ветвями 2, 1 и 5 Ответ: B= Решить задачу 5, используя соотношения (8) и (9). Теория / ТОЭ / Лекция N 3. Представление синусоидальных величин с помощью векторов и комплексных чисел. Переменный ток долгое время не находил практического ...
... сформулированной гипотезы необходимо было решить следующие задачи: 1. Выявить роль тригонометрических уравнений и неравенств при обучении математике; 2. Разработать методику формирования умений решать тригонометрические уравнения и неравенства, направленную на развитие тригонометрических представлений; 3. Экспериментально проверить эффективность разработанной методики. Для решения ...
0 комментариев