5. Конические соединения

 

Конические соединения представляют собой разновидность фрик­ционных соединений, используемых для пе­редачи вращающего момента между дета­лями с соосными посадочными поверхностями. Обычно такие соединения применяют для закрепления деталей на кон­цах валов.

Натяг и контактные напряжения в конических соединениях (в отличие от цилин­дрических соединений) создаются затяж­кой.

Уравнение равновесия при равномерном распределении по длине контактных напря­жений q и касательных напряжений τf от трения (сцепления) имеет вид

где r1 и r2 - соответственно минималь­ный и максимальный радиусы конического участка вала в сопряжении.

Если учесть, что dz=dr·ctgα. то после интегрирования и несложных преобразо­ваний получим

где F0 - сила затяжки соединения; dm и l - средний диаметр и длина соединения; α - угол наклона образующей конуса к оси вала; f - коэффициент трения пары вал - ступица.

Из соотношения видно, что с увеличением угла α (конусности) необ­ходимо увеличивать затяжку соединения для сохранения уровня контактных на­пряжений.

Обычно из технологических соображе­ний применяют небольшую конусность. По ГОСТ 21081-75 конусность

что соответствует α≈2°52' (d1 и d2 - минимальный и максимальный диаметры вала в соединении). При большей конусности на несущую способность соединений существенное влияние оказывают погрешности углов конуса вала и ступицы (втулки), т. е. в конических соединениях отношение f/tgα<1. При малом угле α можно при­нять, что диаметр вала d≈dm.

Вращающий момент, передаваемый сое­динением.

 

Откуда требуемая минимальная сила затяжки соединения

где k=1,3?1,5 - коэффициент запаса сцепления;. fпр - приведенный коэффициент трения,

Из формулы следует, что на пере­даваемый вращающий момент влияют сила предварительной затяжки, средний диаметр и состояние поверхностей кон­такта.

Максимальная сила затяжки устанав­ливается из условий прочности (подобно максимальному расчетному натягу). Так как конусность невелика, то максималь­ная сила затяжки (tgα=0,5K=0,05)

где D – наружный диаметр ступицы (втулки).

Затяжку соединений контролируют ди­намометрическим ключом или по осе­вому перемещению ступицы.

В процессе работы возможно ослабле­ние затяжки из-за обмятия поверхностей контакта (особенно в соединении со шпон­кой).

Для фиксации осевого положения иног­да используют бурты на валах.


 

6. Клиновые соединения

 

Клиновым называют разъемное соединение, затягиваемое или регулируемое с помощью клина. Типичным примером клинового соеди­нения является соединение стержня со втулкой. Со­единение обычно затягивают, забивая клин или перемещая его посредством винта.

7,35

Рисунок 6 – Клиновые соединения стержня со втулкой

Достоинства клинового соединения: 1) бы­строта сборки и разборки; 2) возмжность создания больших сил затяжки и возможность восприятия больших нагрузок; 3) относитель­ная простота конструкции.

По назначению клиновые соединения раз­деляют на: 1) силовые, предназначенные для прочного скрепления деталей; 2) установочные, предназначенные для установки и регулирова­ния требуемого взаимного положения деталей.

Силовые соединения применяют для постоян­ного скрепления при редких разборках в маши­нах и при частой сборке и разборке в приспособ­лениях для обработки деталей на станках и в сборных литейных моделях.

Большинство силовых клиновых соединений выполняют с предварительным натягом: клином создается внутренняя сила, действующая и при отсутствии внешней нагрузки. Установочные клиновые соединения обычно выполняют без предварительного натяга с силовым замыкани­ем, преимущественно нагрузкой от сил тяжести.

В клиновых соединениях применяют почти исключительно односкосные клинья. Рабочие по­верхности клиньев выполняют цилиндрически­ми или плоскими с фасками. В крепежных клиновых соединениях уклоны выбирают из условия самоторможения равными 1:100, 1:50, в часто затягиваемых и установоч­ных клиньях - 1:20, 1: 10, 1:4.

7,37

Рисунок 7 – Расчётные схемы клинового соединения

Примерные соотношения размеров клиньев в соединении стержня диаметром d со втулкой:

толщина клина (из условия равнопрочности стержня на растяжение и на смятие клином) b=(0,25?0,3)d; высота сечения клина h≥2,5b.

При забивании и выбивании клина (в соответстивии с рисунком 7), а суммарные силы на рабочих гранях кли­на наклонены к нормалям на угол трения φ в сто­рону, обратную перемещению клина. Обозначим силу забивания клина через F, а силу, развиваемую на стержне,- через Q. В устано­вочных клиновых соединениях она равна полез­ной внешней нагрузке Q=Qвн. В соединениях с предварительным натягом по условию, что после приложения внешней нагрузки в соедине­нии сохраняется натяг, расчетная сила в стер­жне Q=(1,25?1,5)Qвн. Согласно условию равновесия клина в направлении его оси мож­но записать F=Q[tg(α+φ)+tgφ].

Сила выбивания клина

Самоторможение определяется условием, что сила F1 больше или равна нулю. Полагая в пре­дыдущем уравнении F1≥0, получаем

, отсюда α≤2φ.

Таким образом, угол односкосного клина или сумма углов сторон (угол заострения) дву­скосного клина должны быть меньше двойного угла трения на рабочих гранях.

Расчетный коэффициент трения обычно принимают равным 0,1; тогда φ≈5°45'. Однако при пластичном смазочном материале и чистых поверхностях коэффициент трения может сни­жаться до 0,04. Наоборот, при сухих обезжи­ренных поверхностях коэффициент трения возрастает до 0,2?0,3 и более. В крепежных клиновых соединениях обеспечивается значи­тельный запас самоторможения. При уклонах, меньших 1:25, и постоянной нагрузке нет не­обходимости в специальных стопорных уст­ройствах, предохраняющих соединения от самопроизвольного ослабления. В остальных случаях клинья специально закрепляют.

При расчёте клина предпологают, что давление по поверхности контакта распределяется равномерно (рисунок 7, б). В действительности распределение давления особенно при больших нагрузках более благоприятно для прочности клина на изгиб (рисунок 7, в).

Дополнительно проверяют поверхность кон­такта клина и втулки на смятие, хвостовую часть стержня на срез, а также прочность втул­ки как толстостенной трубы, подверженной внутреннему давлению.



Информация о работе «Соединения деталей и узлов машин»
Раздел: Промышленность, производство
Количество знаков с пробелами: 71478
Количество таблиц: 1
Количество изображений: 27

Похожие работы

Скачать
27040
0
1

... в освоенный технологический процесс. Это является большим недостатком метода повторных сборок. В тех случаях, когда технология сборки только разработана, но еще не внедрена в производство, анализ технико-экономических ха­рактеристик сборочного процесса можно произвести по методу, раз­работанному доктором техн. наук Н. А. Бородачевым. Для этой цели все операции разработанного технологического ...

Скачать
45206
11
5

... , применением унифицированной технологии, применением параллельной и параллельно-последовательной обработки, максимальной механизацией технологических процессов. Предлагаемые модели женских костюмов имеют одну технологичную конструктивную основу, что дает возможность применить наиболее эффективные методы изготовления одежды, исключить потери рабочего времени при смене моделей в потоке. При ...

Скачать
80154
6
16

... винта, снять крышку с узлом электропривода, вынуть барабан, удалить белье. Собрать машину в обратной последовательности 2.2 Анализ существующего технологического процесса ремонта стиральных машин барабанного типа Производственным процессом ремонта называется вся совокупность действий, осуществляемых с момента поступления объектов ремонта на завод или в мастерскую до получения полностью ...

Скачать
19448
0
6

... кулачков, маховичков, шкивов на валы и оси с последующей фиксацией их винтами, гайками, штифтами или другими деталями, обеспечивающими жесткое соеди­нение. При изготовлении оптико-механических приборов для соединения зубчатых колес с валами используют шлицевые детали. Шлицы выполняют по наружной поверхности охватываемой детали и по внутренней поверхности ох­ватывающей детали. Форма шлицев бывает ...

0 комментариев


Наверх