1.  интеграл от суммы, есть сумма интегралов;

2.  вынесение const за знак интеграла.

Можно сделать вывод: оператор А является линейным.

3) Проверим, является ли А непрерывным, для этого воспользуемся определением непрерывности:

p (fn(t), f0(t))  0 p (A fn(t), Af0(t)) 0.

Оператор А, действует в пространстве C[a,b], в котором расстояние между функциями определяется следующим образом:

p (fn(t), f0(t)) = | fn(t) - f0(t)|.

Решение:

p (A fn(t), Af0(t)) = | - |.

| - | = ||     = p (fn(t), f0(t))  = p (fn(t), f0(t)) (x-a)  0

axb.

Таким образом p (A fn(t), Af0(t))  0. следовательно по определению 2 оператор А непрерывен.

4) Непрерывный оператор является ограниченным (теорема 3):

||  ||  ||

|| = 0; || = |b-a|.

0  ||  |b-a|.

5) Оператор А ограниченный, следовательно у него можно найти норму. Найдем норму оператора А (используя определение ||A||=|A(f)|):

||A|| = |A(f)| =  ||     = (x-a);

a  x  b;

Норма оператора А: ||A|| = (b-a);

6) Обратимость интегрального оператора и его спектр.

Возьмем пространство S = {f  C[0,b] / f(0) = 0} с нормой ||f|| = |f(x)|.

В пространстве S рассмотрим оператор А:

Аf =

x  [0,b], t  [0,x];

Найдем оператор обратный к (A - *I),   R;

(A - *I)*f = g

 - *f(x) = g(x) (1)

Пусть функции f и g дифференцируемы;

Продифференцируем уравнение (1), получим:

f - *f/ = g/ (2)

Это уравнение (2) – дифференциальное неоднородное линейное уравнение. Решим это уравнение, используя метод Бернулли.

 - f/ =

 -  + f/ = 0 (3)

Представим решение уравнения в виде: f(x) = U(x)*V(x), тогда уравнение (3) примет вид:

 - *U*V + U/ *V + U*V/  = 0

U/ *V + U*V/ - *U*V = -

U/ *V + U*(V/ - *V) = -  (4)

Решаем однородное линейное уравнение:

V/ - *V = 0

V/ = *V

 = *V

 =

LnV =  + c

V = *, пусть  = с1

V = с1*

Подставим частное решение однородного уравнения в уравнение (4) при условии, что V/ - *V = 0.

Получим уравнение:

U/ * с1* = -

 = -

 = - *

U = -*

Подставим U и V в f(x) = U(x)*V(x) и получим:

f(x) = с1**(-)*

найдем интеграл Y = , интегрируем по частям:

dz = g/(x)dx;

z =  = g(x);

j = ;

dj = - *dx;

Y = g(x)*  + *

Подставим полученное значение в выражение f(x), которое примет вид:

f(x) = - - **;

Получим оператор В:

Bg = - - **;

x  [0,b], t  [0,x], g(x)  S,  - произвольное число.

Оператор В не существует, если  = 0;

Рассмотрим ограниченность оператора В для всех   R,   0;

||Bg|| = ||f(x)|| = |f(x)| = |- - **|  (|| + |**|)  || + |**|  || + |*|*|g(x)* |*|x|  *|g(x)| + *|g(x)|* (||*|x|)  |g(x)|*(  + ***b);

При  > 0

 = ;

 = 1;

При  < 0

 =1;

 = ;

Эти оба случая можно записать в общем виде: {1, }, тогда

|g(x)|*(  + ***b)  |g(x)|*(  + *{1, }*b) = ||g(x)||*(  + *{1, }*b);

Итак:

||Bg||  ||g(x)||*(  + *{1, }*b);

То есть В – ограничен.

Осталось проверить, что В – оператор, обратный к (A - *I).

Если это так, то произведение этих операторов равно единичному оператору или же (A - *I)*(Bg) = g(x).

Итак, нужно доказать, что

 + g(x) + * = g(x)

или

-* -  + ** = 0; (*)

Возьмем производную от левой части (*) и получим:

-*g(x) - ** + ** + *** g(x) = -*g(x) + *g(x) - ** + ** = 0;

Следовательно, выражение (*) = const. Но, так как при x=0 выражение (*) (точнее его левая часть) равно 0, то и const=0. Значит В – обратный оператор к (A - *I) в S.

Итак, мы получили ограниченный оператор В, обратный к (A - *I), который существует при    R, за исключением =0, то есть все возможные 0 – это регулярные точки оператора А; Сам же оператор В – резольвента оператора А. Спектр оператора А – значение  при которых В не существует, то есть =0.

Вывод:

Оператор интегрирования, действующий в пространстве непрерывных функций – C[a,b], определенных на отрезке [a,b], заданный следующим образом: Аf(t) = , где f(t) – функция, непрерывная на [a, b], t  [a,x]; x  [a,b]; a,bR:

1.  линейный;

2.  непрерывный;

3.  ограниченный: 0  ||  |b-a|;


Информация о работе «Некоторые линейные операторы»
Раздел: Математика
Количество знаков с пробелами: 29723
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
30711
0
1

... понятия собственного числа линейного оператора А. 120.            Определите, каким является базис а=(1/, 1/,1/), b=(1/, -1/, 0), с =(1/, 1/,-2/). Зав. кафедрой --------------------------------------------------   Экзаменационный билет по предмету ЛИНЕЙНАЯ АЛГЕБРА Билет № 26 121.            Приведение матрицы к ступенчатому виду методом Гаусса. Пример. 122.            ...

Скачать
7572
0
0

... и1 и и2, соответствующие различным собственным значениям λ1 и λ2, ортогональны. Действительно, из соотношений   Lu1 = λ1 и1, Lu2 = λ2и2, из вещественности λ1 и λ2 и из эрмитовости оператора L получаем цепочку равенств λ1(и1,и2) = (λ и1,и2) = (Lи1,и2) = (и1,Lu2) = (и1,λ2и2) = =λ2(и1,и2), т.е. λ1(и1,и2) = λ2(и1,и2). Отсюда, ...

Скачать
33462
0
0

... , называется оператором сдвига, если он каждую последовательность вида (х1,х2,…, хn…) переводит в последовательность вида (0, х1, х2, …, хn…), т.е. выполняется равенство: (х1,х2,…, хn…)=(0, х1, х2, …, хn…). Можно также рассматривать оператор сдвига, который действует в пространстве последовательностей, бесконечных в обе стороны. Элемент этого пространства можно представить в таком виде: (…х-2, ...

Скачать
36187
0
5

... состоит из значений функции g(x) на отрезке [a,b]. Причём этот оператор имеет лишь непрерывный спектр, так как резольвента при  существует, но не непрерывна. Точечного спектра оператор не имеет. Пример 3: Рассмотрим оператор дифференцирования на множестве дифференцируемых функций. А: (для краткости будем писать вместо f(x) просто f). Рассмотрим резольвенту этого оператора: , то есть мы должны ...

0 комментариев


Наверх