2. Формула для подсчета обратимых матриц порядка 3.
Будем рассматривать матрицы .
Алгебраические дополнения к элементам ,
и
есть определители матриц
,
и
соответственно, порядка 2, при чем
,
и
.
Нужно найти количество всех невырожденных матриц ().
При этом
(2.1)
Формулу выведем в 3 этапа.
1) Пусть (р-1 штук),
(их количество по формуле (1.5)),
(по р штук) (2.2).
(р-1)3р5(р+1) (2.3)
Мы утверждаем, что по этой же формуле вычисляется количество матриц, определитель которых не обращается в нуль, при условии, что ,
.
При условии (2.2) не учитываются матрицы вида с неравным нулю определителем, количество которых нужно прибавить. Но сосчитали матрицы вида
с определителем обращающимся в нуль, количество которых нужно вычесть.
Докажем, что количество матриц в обоих случаях одинаково:
а) (р-1 штук),
и
. Из (2.1) получаем равенство
.
а1) Пусть =0. Тогда
и
. Значит элементов
всего р-1 штук, количество невырожденных матриц
- (р-1)2р(р+1). Т.к
то из выражения
получаем равенство
, т.е. хотя бы один из этих элементов не равен нулю. Пусть
. Из того, что
получаем
. Элементом
, принимающим любое значение, можем однозначно задать элемент
. Поэтому количество матриц удовлетворяющих этим условиям (р-1)4×р2×(р+1) штук.
а2) Если ¹0,
.Тогда
и
. Значит элементов
всего р-1 штук, количество невырожденных матриц
- (р-1)2р(р+1). Т.к
, то, из выражения
получаем
. Пусть
. Домножим равенство
(
) на
. Заменим
на
(из того, что
). Получим равенство
. Вынесем
за скобки
и т.к.
делаем вывод, что
. Значит и
(
). Поэтому количество матриц удовлетворяющих этим условиям (р-1)5×р×(р+1) штук.
а3) Если ¹0,
и
получаем (р-1)4×р2×(р+1) штук матриц удовлетворяющих этим условиям (рассуждение как в пункте а1)
а4) Если ¹0,
,
и
получаем
(р-1)5×р×(р+1) штук матриц удовлетворяющих этим условиям (рассуждение как в пункте а2)
а5) Если ¹0,
,
и
. Из того, что
получаем
. Пусть
. Равенство
(
) умножим на
и заменим
на
(
). Получим равенство
. Вынося
за скобки (
), замечаем, что элемент
однозначно выражается через
(
- р-1 штук). Но тогда
тоже выражается через эти элементы. Поэтому количество матриц удовлетворяющих этим условиям (р-1)6×р×(р+1)штук.
Таким образом, общее количество матриц удовлетворяющих условию пункта а) подсчитывается по формуле
(р-1)4×р×(р+1)×(р2+2р-1) (получается суммированием формул полученных в пунктах а1-а5).
б) (р-1 штук),
((р-1)2×р×(р+1)) штук). Т.к.
, значит
(2.4)
б1) Пусть =0. Тогда из (2.4) выводится равенство
(2.5)
а из (2.5) получим . Распишем (2.5):
. Т.е.
однозначно выражается через элемент
, которых может быть р штук, и через элементы
,
,
,
,
. Поэтому количество матриц удовлетворяющих этим условиям (р-1)4×р2×(р+1).
б2) Если ¹0,
.Тогда получим опять равенство (2.5) и из него
. Элементов
всего р-1 штук. Т.к
, то получаем
что
. Пусть
. Умножив равенство (2.5) на
, выражая
и произведя замену
на
получим равенство
. А т.к.
и
делаем вывод, что
и
выражаются через все остальные элементы матрицы. Поэтому количество матриц удовлетворяющих этим условиям
(р-1)5×р×(р+1) штук.
б3) Если ¹0,
и
получаем (р-1)4×р2×(р+1) матриц удовлетворяющих этим условиям (рассуждения как в
пункте б1)
б4) Если ¹0,
,
и
получаем
(р-1)5×р×(р+1) матриц удовлетворяющих этим условиям (рассуждения как в пункте б2)
б5) Пусть ¹0,
,
и
. Из того, что
, получаем
. Пусть
. Тогда преобразовывая (2.4) получаем, что
однозначно выражается через
и все остальные элементы.
Поэтому количество матриц удовлетворяющих этим условиям (р-1)6×р×(р+1) штук.
Таким образом, общее количество матриц удовлетворяющих условию пункта б) подсчитывается по формуле
(р-1)4×р×(р+1)×(р2+2р-1) (получается суммированием формул полученных в пунктах б1-б5).
Значит формула (р-1)3р5(р+1) для случая 1) при условии (2.2) верна.
2) Пусть ,
(количество их р-1),
(количество высчитывается по формуле (1.5)) и
(по р штук). Тогда из (2.1) получаем
.
Тогда количество таких матриц вычисляется по формуле
(р-1)3р4(р+1) (2.6)
Мы утверждаем, что по этой же формуле вычисляется количество матриц, определитель которых не обращается в нуль, при условии, что ,
и
.
Но при этих условиях не учитываются матрицы вида с неравным нулю определителем, количество которых нужно прибавить. Но сосчитали матрицы вида
с определителем обращающимся в нуль, количество которых нужно вычесть.
Докажем, что количество матриц в обоих случаях одинаково:
а) ,
и
. Из (2.1) получаем равенство
,
, а из того что
получаем что, например, элемент
однозначно выражается через элемент
(р штук) и все остальные элементы. А значит количество матриц с данными условиями (р-1)4р2(р+1).
б) ,
и
. Из (2.1) получаем равенство
,
. А из
можем однозначно выразить, например, элемент
через элемент
(р штук) и все остальные элементы. А значит количество матриц с данными условиями (р-1)4р2(р+1).
3) Пусть ,
,
(количество их p-1),
(количество высчитывается по формуле (1.5)) и
(по р штук).
Тогда количество таких матриц вычисляется по формуле
(р-1)[(р-1)2р(р+1)]×р×р×р (2.7)
Этими этапами мы перебрали все случаи невырожденных матриц порядка 3. складывая формулы (2.3), (2.6) и (2.7), полученные в этапах 1), 2) и 3) получаем формулу для нахождения количества обратимых матриц порядка 3 матриц над полем Zp
(р-1)3р3(р+1)(р2+р+1) (2.8)
3. Общая формула для подсчета обратимых матриц над полем Zp.
Используя алгоритм, описанный в предыдущих пунктах, для выведения формулы подсчета количества обратимых матриц, можем получить частные формулы для матриц произвольных порядков.
Например:
Для матриц порядка 4:
(р-1)4р6(р+1)(р2+р+1)(р3+р2+р+1).
Для матриц порядка 5:
(р-1)5р10(р+1)(р2+р+1)(р3+р2+р+1)( р4+р3+р2+р+1), и т.д.
Анализируя полученные результаты, можем сделать выводы, что общая формула для получения количества обратимых матриц порядка n над полем Zp выглядит так:
Данную формулу тождественными преобразованиями можно привести к виду:
§3. Обратимые матрицы над кольцом Zn
Из теоремы доказанной в § 1 следует, что для определителей матриц A и B выполняется равенство |A·B|=|A|·|B|.Для обратимых матриц A и B следует A·B=E.Следовательно |A·B|=|A|·|B|=|E|=1.
Таким образом, получаем: определитель обратимой матрицы является обратимым элементом.
Попытаемся сосчитать количество обратимых матриц над некоторыми кольцами вычетов по составному модулю.
Обратимые матрицы над Z4.
* | 0 | 1 | 2 | 3 |
0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 2 | 3 |
2 | 0 | 2 | 0 | 2 |
3 | 0 | 3 | 2 | 1 |
В Z4 обратимыми элементами являются 1и3. Рассмотрим сколько обратимых матриц с определителем равным 1: |A|=ad-bc=1.
Разобьем на следующие варианты:
1. ad=3. Возможные случаи:
1) a=1 Ù d=3,
2) a=3 Ù d=1,
bc=2. Возможные случаи:
1) b=1 Ù c=2,
2) b=2 Ù c=1,
3) b=2 Ù c=3,
4) b=3 Ù c=2.
Получили с данным условием 8 обратимых матриц.
2. ad=2. Возможно 4 случая (см. предыдущий пункт).
bc=1. Возможные случаи:
1) b=c=1,
2) b=c=3.
Получили с данным условием 8 обратимых матриц.
3. ad=1. Возможно 2 случая (см. предыдущий пункт).
bc=0. Возможные случаи:
1) b=0 Ù c=1,
2) b=0 Ù c=2,
3) b=0 Ù c=3,
4) b=1 Ù c=0,
5) b=2 Ù c=0,
6) b=3 Ù c=0,
7) b=c=0,
8) b=c=2.
Получили сданным условием 16 обратимых матриц.
... гомоморфизм . K= - подгруппа Z и значит K=mZ для некоторого целого m. Отсюда следует, что H= . При этом и потому n=dm где d - целое. По теореме о гомоморфизме . Из доказанных теорем следует, что всякая подгруппа циклической группы циклична. Мы видим также, что для каждого целого d, делящего порядок n конечной циклической группы имеется и притом ровно одна подгруппа порядка d, то есть для ...
... но они не равны друг другу. Так будет, например, для подкольца , состоящего из матриц с нулевой последней строкой и последним столбцом; =diag(1,1,...,1,0) =diag(1,1,...,1). Определение. Гомоморфизмом колец называется отображение, сохраняющее обе кольцевые операции: и . Изоморфизм - это взаимно однозначный гомоморфизм. Ядро гомоморфизма - это ядро группового гомоморфизма аддитивных групп , то ...
... -x * y. Полем называется такое ассоциативное коммутативное кольцо с единицей k, в котором всякий ненулевой элемент обратим: . Таким образом, по определению в поле отсутствуют делители нуля. Кольцом называется множество с двумя алгебраическими операциями R (+, *), если: 0. Обратимыми называют те элементы кольца R, которые имеют обратные относительно операции умножения, множество R в данном случае ...
... a = bq1 + r1 , b = r1 q2 + r2 , r1 = r2 q3 + r3 , . . . . . . . . . . . . . rn-2 = rn-1qn-1+ rn . Докажем, что каждое из чисел rk линейно выражается через a и b с целыми коэффициентами. Для r1 утверждение тривиально: r1 = a - bq1 . Считая, что каждое из чисел r1 , r2 , . . . , rn-1 является целочисленной линейной комбинацией чисел a ...
0 комментариев