6. ad=0. Возможно 15 случаев (см. предыдущий пункт).
bc=5. Возможно 2 случая (см. первый пункт).
Получили с данным условием 30 обратимых матриц.
Таким образом по данной классификации получаем 12+30+30+12+30+30=144 обратимых матриц, определитель которых
равен 1. Аналогичную классификацию можно составить для обратимых матриц с определителем равным 5, и число таких матриц будет также равно 144.
Следовательно, из 1296 квадратных матриц второго порядка над Z6 обратимыми являются 288.
Обратимые матрицы над Z8
* | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
2 | 0 | 2 | 4 | 6 | 0 | 2 | 4 | 6 |
3 | 0 | 3 | 6 | 3 | 4 | 7 | 2 | 5 |
4 | 0 | 4 | 0 | 4 | 0 | 4 | 0 | 4 |
5 | 0 | 5 | 2 | 7 | 4 | 1 | 6 | 3 |
6 | 0 | 6 | 4 | 2 | 0 | 6 | 4 | 2 |
7 | 0 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
В Z8 обратимыми элементами являются 1, 3, 5 и 7. Аналогично рассмотрим, сколько обратимых матриц с определителем равным 1
|A|=ad-bc=1.
Аналогично предыдущим пунктам будем придерживаться той же классификации:
1. ad=7. Возможно 4 случая.
bc=6. Возможно 8 случаев.
Получили с данным условием 32 обратимых матрицы.
2. ad=6. Возможно 8 случаев.
bc=5. Возможно 4 случая.
Получили с данным условием 32 обратимых матрицы.
3. ad=5. Возможно 4 случая.
bc=4. Возможно 12 случаев.
Получили с данным условием 48 обратимых матриц.
4. ad=4. Возможно 12 случаев.
bc=3. Возможно 4 случая.
Получили с данным условием 48 обратимых матриц.
5. ad=3. Возможно 4 случая.
bc=2. Возможно 8 случаев.
Получили с данным условием 32 обратимых матрицы.
6. ad=2. Возможно 8 случаев.
bc=1. Возможно 4 случая.
Получили с данным условием 32 обратимых матрицы.
7. ad=1. Возможны 4 случая .
bc=0. Возможно 20 случаев.
Получили с данным условием 80 обратимых матриц.
8. ad=0. Возможно 20 случаев.
bc=7. Возможно 4 случая.
Получили с данным условием 80 обратимых матриц.
Таким образом, обратимых матриц, определитель которых
равен 1 —384.
Следовательно, из 4096 квадратных матриц второго порядка над Z8 обратимыми являются 1536.
Обратимые матрицы над Z9
* | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
2 | 0 | 2 | 4 | 6 | 8 | 1 | 3 | 5 | 7 |
3 | 0 | 3 | 6 | 0 | 3 | 6 | 0 | 3 | 6 |
4 | 0 | 4 | 8 | 3 | 7 | 2 | 6 | 1 | 5 |
5 | 0 | 5 | 1 | 6 | 2 | 7 | 3 | 8 | 4 |
6 | 0 | 6 | 3 | 0 | 6 | 3 | 0 | 6 | 3 |
7 | 0 | 7 | 5 | 3 | 1 | 8 | 6 | 4 | 2 |
8 | 0 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
В Z9 обратимыми элементами являются 1, 2, 4, 5, 7 и 8.
1. ad=8. Возможно 6 случаев.
bc=7. Возможно 6 случаев.
Получили с данным условием 36 обратимых матриц.
2. ad=7. Возможно 6 случаев.
bc=6. Возможно 12 случаев.
Получили с данным условием 72 обратимых матриц.
3. ad=6. Возможно 12 случаев.
bc=5. Возможно 6 случаев.
Получили с данным условием 72 обратимых матриц.
4. ad=5. Возможно 6 случаев.
bc=4. Возможно 6 случаев.
Получили с данным условием 36 обратимых матриц.
5. ad=4. Возможно 6 случаев.
bc=3. Возможно 12 случаев.
Получили с данным условием 72 обратимых матриц.
6. ad=3. Возможно 12 случаев.
bc=2. Возможно 6 случаев.
Получили с данным условием 72 обратимых матриц.
7. ad=2. Возможно 6 случаев.
bc=1. Возможно 6 случаев.
Получили с данным условием 36 обратимых матриц.
8. ad=1. Возможно 6 случаев.
bc=0. Возможно 21 случай.
Получили с данным условием 126 обратимых матриц.
9. ad=0. Возможно 21 случай.
bc=8. Возможно 6 случаев.
Получили с данным условием 126 обратимых матриц.
Таким образом, обратимых матриц, определитель которых равен 1 -648.
Следовательно, из 6561 квадратных матриц второго порядка над Z9 обратимыми являются 3888.
Обратимые матрицы над Z10
* | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
2 | 0 | 2 | 4 | 6 | 8 | 0 | 2 | 4 | 6 | 8 |
3 | 0 | 3 | 6 | 9 | 2 | 5 | 8 | 1 | 4 | 7 |
4 | 0 | 4 | 8 | 2 | 6 | 0 | 4 | 8 | 2 | 6 |
5 | 0 | 5 | 0 | 5 | 0 | 5 | 0 | 5 | 0 | 5 |
6 | 0 | 6 | 2 | 8 | 4 | 0 | 6 | 2 | 8 | 4 |
7 | 0 | 7 | 4 | 1 | 8 | 5 | 2 | 9 | 6 | 3 |
8 | 0 | 8 | 6 | 4 | 2 | 0 | 8 | 6 | 4 | 2 |
9 | 0 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
В Z10 обратимыми элементами являются 1, 3, 7 и 9.
1. ad=9. Возможно 4 случая.
bc=8. Возможно 12 случаев.
Получили с данным условием 48 обратимых матриц.
2. ad=8. Возможно 12 случаев.
bc=7. Возможно 4 случая.
Получили с данным условием 48 обратимых матриц.
3. ad=7. Возможно 4 случая.
bc=6. Возможно 12 случаев.
Получили с данным условием 48 обратимых матриц.
4. ad=6. Возможно 12 случаев.
bc=5. Возможно 9 случаев.
Получили с данным условием 108 обратимых матриц.
5. ad=5. Возможно 9 случаев.
bc=4. Возможно 12 случаев.
Получили с данным условием 108 обратимых матриц.
6. ad=4. Возможно 12 случаев.
bc=3. Возможно 4 случая.
Получили с данным условием 48 обратимых матриц.
7. ad=3. Возможно 4 случая.
bc=2. Возможно 12 случаев.
Получили с данным условием 48 обратимых матриц.
8. ad=2. Возможно 12 случаев.
bc=1. Возможно 4 случая.
Получили с данным условием 48 обратимых матриц.
9. ad=1. Возможно 4 случая.
bc=0. Возможно 27 случаев.
Получили с данным условием 108 обратимых матриц.
10. ad=0. Возможно 27 случаев.
bc=9. Возможно 4 случая.
Получили с данным условием 108 обратимых матриц.
Таким образом, обратимых матриц, определитель которых
равен 1 —720.
Следовательно, из 10000 квадратных матриц второго порядка над Z10 обратимыми являются 2880.
Используя выше изложенный метод, было также вычислено количество обратимых матриц для колец вычетов по модулям:10, 12, 14, 15, 16, 18, 20, 21. В результате всех вычислений были получены следующие данные (ниже также использованы формулы полученные в §2):
Zn | формула | количество |
2 | (p-1)2p(p+1) | 6 |
3 | (p-1)2p(p+1) | 48 |
4 | - | 96 |
5 | (p-1)2p(p+1) | 480 |
6 | - | 288 |
7 | (p-1)2p(p+1) | 2016 |
8 | - | 1536 |
9 | - | 3888 |
10 | - | 2880 |
11 | (p-1)2p(p+1) | 13200 |
12 | - | 4608 |
13 | (p-1)2p(p+1) | 26208 |
14 | - | 12096 |
15 | - | 23040 |
16 | - | 24576 |
17 | (p-1)2p(p+1) | 78336 |
18 | - | 23328 |
19 | (p-1)2p(p+1) | 123120 |
20 | - | 43520 |
21 | - | 96768 |
В итоге анализа полученных результатов эмпирическим путем была получена следующая формула для вычисления количества обратимых матриц второго порядка над кольцом вычетов по произвольному модулю.
Пусть Zn -кольцо вычетов по модулю n, причем n=p1k1p2k2…pmkm ,
Тогда количество обратимых матриц второго порядка равно:
(p1-1)2(p2-1)2…(pm-1)2p1p2…pm(p1+1)(p2+1)…(pm+1)(p14)k1-1(p24)k2-1…(pm4)km-1
Литература
1. Бухштаб А.А. Теория чисел. М.: Просвещение, 1966.
2. Куликов Л.Я. Алгебра и теория чисел. М.: Высшая школа, 1979.
3. Курош А. Г. Курс высшей алгебры. М.: Наука, 1975.
... гомоморфизм . K= - подгруппа Z и значит K=mZ для некоторого целого m. Отсюда следует, что H= . При этом и потому n=dm где d - целое. По теореме о гомоморфизме . Из доказанных теорем следует, что всякая подгруппа циклической группы циклична. Мы видим также, что для каждого целого d, делящего порядок n конечной циклической группы имеется и притом ровно одна подгруппа порядка d, то есть для ...
... но они не равны друг другу. Так будет, например, для подкольца , состоящего из матриц с нулевой последней строкой и последним столбцом; =diag(1,1,...,1,0) =diag(1,1,...,1). Определение. Гомоморфизмом колец называется отображение, сохраняющее обе кольцевые операции: и . Изоморфизм - это взаимно однозначный гомоморфизм. Ядро гомоморфизма - это ядро группового гомоморфизма аддитивных групп , то ...
... -x * y. Полем называется такое ассоциативное коммутативное кольцо с единицей k, в котором всякий ненулевой элемент обратим: . Таким образом, по определению в поле отсутствуют делители нуля. Кольцом называется множество с двумя алгебраическими операциями R (+, *), если: 0. Обратимыми называют те элементы кольца R, которые имеют обратные относительно операции умножения, множество R в данном случае ...
... a = bq1 + r1 , b = r1 q2 + r2 , r1 = r2 q3 + r3 , . . . . . . . . . . . . . rn-2 = rn-1qn-1+ rn . Докажем, что каждое из чисел rk линейно выражается через a и b с целыми коэффициентами. Для r1 утверждение тривиально: r1 = a - bq1 . Считая, что каждое из чисел r1 , r2 , . . . , rn-1 является целочисленной линейной комбинацией чисел a ...
0 комментариев