1. Генерация исходных данных
В данной курсовой работе вместо статистического наблюдения используются случайные величины, сгенерированные по следующим формулам:
1) непрерывная случайная величина X, определяемая по формуле 1.1;
(1.1)
2) непрерывная случайная величина У, определяемая по формуле 1.2.
(1.2)
где , - значения случайной величины X и У в различных опытах;
- случайное число, равномерно распределенное на отрезке [0, 1], возвращаемое при обращении к стандартной функции на выбранном языке программирования к датчику случайных чисел; Для генерации исходных данных были использованы следующие методы:
1) Для случайной величины в окне Variable в поле Long Name была введена формула 1.3:
(1.3)
2) Для случайной величины был создан программный имитатор в модуле STATISTICA BASIC. Реализация алгоритма генерации данных в модуле STATISTICA BASIC приведена в приложении А.
В результате были получены выборки, объемом 100, 200…1000 значений для каждой из случайных величин.
2. Первичная обработка результатов наблюдения
2.1 Построение вариационного ряда
Вариационный ряд - упорядоченные по возрастанию значения признака.
Построение вариационного ряда в пакете STATISTICA производилось следующим образом:
в модуле Basic Statistics and Tables: Analysis → Frequency tables → кнопка Variables для выбора переменной → отметили All distinct values → ОК.
Размах варьирования – абсолютная величина разности между максимальным и минимальным значениями (вариантами) изучаемого признака:
(2.1)
Построение размаха варьирования в пакете STATISTICA производилось следующим образом:
в модуле Basic Statistics and Tables: Analysis → Descriptive statistics → Variables (выбрать переменную) → нажали Box & whisker plot for all variables → выбрали Median / Quart. / Range → ОК.
Значения размаха варьирования для заданных выборок в таблице 2.1.
Таблица 2.1 – Размах варьирования для заданных выборок
Выборка | ||||||
100 | 25,201 | 6,993 | 18,209 | 28,805 | 2,429 | 26,376 |
500 | 25,110 | 6,984 | 18,126 | 33,695 | 0,196 | 33,499 |
1000 | 25,237 | 6,711 | 18,466 | 33,962 | -1,574 | 35,536 |
Случайная величина имеет меньший размах, чем случайная величина .
... отпуска может быть на 10–20оС ниже, а его продолжительность на 20–25% меньше, чем первого отпуска. Охлаждение после отпуска проводится на воздухе. 1.1.5 Влияние термической обработки на свойства штамповых сталей Служебные свойства штампового инструмента и его стойкость в значительной степени определяются соответствующим назначением марки стали, ее термообработкой и условиями эксплуатации ...
... о начавшихся в них процессах деградации, которые в дальнейшем приведут к условным отказам. В этом случае выбросы являются закономерными, обусловлены физическими процессами и их нельзя исключать из дальнейшего рассмотрения при статистической обработке результатов испытаний. Поэтому для принятия того или иного решения проводят тщательный комплексный анализ возможных причин указанных отклонений. ...
... в процессе обучения, необходима разработка совершенно новых подходов к работе с таким видом информационных ресурсов как базы данных. Глава 2.Технология использования баз данных математических задач в процессе подготовки учащихся к ЕГЭ по математике 2.1 Реализация модели В соответствии с теорией поэтапного формирования умственных действий учащихся, подготовку к сдаче единого ...
... плана ФЭ. Большое разнообразие моделей РК приводит к необходимости использования разнообразных способов и технических средств для измерения их параметров. Как правило, статические и динамические параметры РК измеряют на разных технологических установках. Методы построения средств измерения для идентификации моделей РК могут быть сведены к следующим принципам, учитывающим особенности подключения ...
0 комментариев