2.3 Графическое изображение рядов распределения

Графическое изображение интервальных рядов включает построения полигона частот, гистограммы и кумуляты.

В пакете STATISTICA построение полигона происходит следующим образом:

а) Analysis → Frequency tables → Variables (выбрать переменную);

б) установить количество интервалов в “No. of exact intervals”;

в) Frequency tables → Count;

г) нажать правую кнопку мыши и из выпадающего списка выбрать “Custom Graphs”;

д) 2D Graphs → Graph Type → Line Plot. [1]

Построение кумуляты:

а)Analysis → Frequency tables → Variables (выбрать переменную);

б) установить количество интервалов в “No. of exact intervals”;

в) Frequency tables → Cumul. Count;

г) нажать правую кнопку мыши и выбрать “Custom Graphs”;

д) 2D Graphs → Graph Type → Line Plot (Bar ).

Построение гистограммы происходит следующим образом:

а) Analysis → Frequency tables → Variables (выбрать переменную);

б) установить количество интервалов в “No. of exact intervals”;

в) Frequency tables → Percent;

г) нажать правую кнопку мыши и из выпадающего списка выбрать “Custom Graphs”;

д) 2D Graphs → Graph Type → Bar

2.4 Точечные оценки средних показателей

Точечная оценка математического ожидания по вариационному ряду вычисляется по формуле (2.4):

(2.4)

 

где  – значения элементов выборки.

Оценка дисперсии по вариационному ряду вычисляется по формуле (2.5).

(2.5)

 

Вычисление оценки математического ожидания по интервальному вариационному ряду осуществляется по формуле (2.6):

(2.6)

 

где – середина -го интервала;

 – статистическая вероятность (частость) попадания в -тый интервал.

Оценка дисперсии для интервального ряда вычисляется по формуле (2.7):

(2.7)

 

Вычисление точечных оценок по вариационному ряду в пакете STATISTICA:

Analysis → Descriptive statistics → Categorization → Number of intervals (установить количество интервалов) → More statistics → Mean, Variance. [2]

Значения точечных оценок математического ожидания и дисперсии для простого и интервального рядов приведены в таблице 2.8.

Таблица 2.8 – Оценки математического ожидания и дисперсии

Выборка Математическое ожидание Дисперсия
Простой ряд Интервальный ряд Простой ряд Интервальный ряд

()

16,254 16,279 27,849 28,517

()

16,189 16,174 26,259 26,598

()

15,950 16,006 27,608 28,330

()

16,668 16,936 31,125 31,113

()

15,989 16,007 30,406 31,242

()

15,792 15,740 27,059 28,636

Из приведенных данных видно, что полученные оценки математического ожидания и дисперсии по вариационному (простому) и интервальному рядам имеют близкие значения. Причем, чем больше объем выборки, тем более точный результат. От номера эксперимента, то есть от количества испытаний величины точечной оценки не зависят. Это видно на рисунках 2.25 – 2.32.

Рисунок 2.25 - Зависимость  от объема выборки для

Рисунок 2.26 - Зависимость  от объема выборки для


Рисунок 2.27 - Зависимость  от объема выборки для

Рисунок 2.28 - Зависимость  от объема выборки для

Рисунок 2.29 - Зависимость  от номера эксперимента по


Рисунок 2.30 - Зависимость  от номера эксперимента по

Рисунок 2.31 - Зависимость  от номера эксперимента по

Рисунок 2.32 - Зависимость  от номера эксперимента по


В таблице 2.9 приведены оценки математического ожидания и дисперсии, вычисленные для 10 выборок по 1000 элементов в каждой для случайной величины  и случайной величины .

Таблица 2.9 – Точечные оценки выборок из 1000 элементов для  и

Выборка

1 15,792 27,832 15,754 27,421
2 16,193 29,501 16,283 29,650
3 16,076 29,006 15,900 28,716
4 16,052 28,884 16,096 26,124
5 15,968 28,508 15,947 30,983
6 16,212 28,710 16,163 29,956
7 16,215 28,747 16,030 30,011
8 15,945 27,243 16,428 29,069
9 16,080 28,103 16,054 28,265
10 15,853 28,369 15,980 28,913

Информация о работе «Комплексная статистическая обработка экспериментальных данных»
Раздел: Экономика
Количество знаков с пробелами: 42056
Количество таблиц: 53
Количество изображений: 8

Похожие работы

Скачать
140975
39
36

... отпуска может быть на 10–20оС ниже, а его продолжительность на 20–25% меньше, чем первого отпуска. Охлаждение после отпуска проводится на воздухе. 1.1.5 Влияние термической обработки на свойства штамповых сталей Служебные свойства штампового инструмента и его стойкость в значительной степени определяются соответствующим назначением марки стали, ее термообработкой и условиями эксплуатации ...

Скачать
10137
3
4

... о начавшихся в них процессах деградации, которые в дальнейшем приведут к условным отказам. В этом случае выбросы являются закономерными, обусловлены физическими процессами и их нельзя исключать из дальнейшего рассмотрения при статистической обработке результатов испытаний. Поэтому для принятия того или иного решения проводят тщательный комплексный анализ возможных причин указанных отклонений. ...

Скачать
122582
1
9

... в процессе обучения, необходима разработка совершенно новых подходов к работе с таким видом информационных ресурсов как базы данных. Глава 2.Технология использования баз данных математических задач в процессе подготовки учащихся к ЕГЭ по математике 2.1 Реализация модели В соответствии с теорией поэтапного формирования умственных действий учащихся, подготовку к сдаче единого ...

Скачать
148486
26
5

... плана ФЭ. Большое разнообразие моделей РК приводит к необходимости использования разнообразных способов и технических средств для измерения их параметров. Как правило, статические и динамические параметры РК измеряют на разных технологических установках. Методы построения средств измерения для идентификации моделей РК могут быть сведены к следующим принципам, учитывающим особенности подключения ...

0 комментариев


Наверх