2.7 Оценка однородности выборки
Любая исследуемая совокупность содержит как значения признаков, сложившихся под влиянием факторов, непосредственно характерных для анализируемой совокупности, так и значения признаков, полученных под воздействием иных факторов, не характерных для основной совокупности.
Совокупность считается однородной, если коэффициент вариации не превышает 33% (для распределений, близких к нормальному). [4]
Из таблицы 2.36 видно, что однородными можно считать выборки случайной величины при равном 100, 500, 1000 и при n равном 1000.
Однородность выборки можно проверить, также используя метод Ирвина, основанный на определении -статистики. При его использовании выявление аномальных наблюдений производится по формуле (2.19).
|
где – упорядоченная (по возрастанию или по убыванию) исследуемая совокупность;
– значение ряда;
– предыдущее значение ряда;
– среднеквадратическое отклонение.
Если расчетное значение превысит уровень критического, то оно признается аномальным.
Произведя соответствующие расчёты в Microsoft Excel мы убедились, что ни одно из расчётных значений не превышает уровень критического значения. Это значит, что все выборки случайных величин и – однородны.
2.8 Проверка нормальности эмпирического распределения
2.8.1 Проверка нормальности эмпирического распределения на основе анализа точечных оценок числовых характеристик
Если среднее арифметическое, медиана и мода имеют близкие значения, это указывает на вероятное соответствие изучаемого распределения нормальному закону. Для нормального распределения коэффициент асимметрии и эксцесса равны нулю, а для равномерного эксцесс равен -1,2.
В таблице 2.37 приведены данные для проверки вышеуказанных утверждений.
Таблица 2.37 – Анализ числовых характеристик положения и вариации
равномерный закон (СВ ) | нормальный закон (СВ ) | |||||||
выборка | выборка | |||||||
100 | 16,254 | 16,587 | -0,009 | -1,017 | 100 | 16,668 | 16,531 | -0,449 |
200 | 16,369 | 15,840 | 0,034 | -1,264 | 200 | 15,688 | 15,703 | 0,712 |
300 | 16,355 | 16,335 | -0,092 | -1,270 | 300 | 15,696 | 15,655 | 0,472 |
400 | 15,658 | 15,581 | 0,056 | -1,254 | 400 | 16,770 | 16,954 | -0,196 |
500 | 16,189 | 16,501 | -0,058 | -1,160 | 500 | 15,989 | 16,013 | -0,138 |
600 | 16,048 | 15,897 | -0,022 | -1,158 | 600 | 16,049 | 16,008 | -0,077 |
700 | 15,964 | 15,956 | -0,017 | -1,159 | 700 | 16,319 | 16,576 | -0,128 |
800 | 15,867 | 15,649 | 0,072 | -1,218 | 800 | 15,990 | 16,082 | 0,172 |
900 | 16,132 | 16,028 | -0,022 | -1,243 | 900 | 15,885 | 15,749 | -0,092 |
1000 | 15,950 | 16,119 | 0,007 | -1,192 | 1000 | 15,792 | 15,795 | 0,170 |
Анализируя полученные данные, можно сделать вывод о том что значения медианы и среднего арифметического для выборок случайной величины и имеют практически равное значение. Для выборки значение коэффициента ассиметрии, а для выборки случайной величины значение эксцесса практически равно 0. Для случайной величины значение эксцесса практически -1,2. Таким образом, все это свидетельствует о близости распределения случайной величины нормальному распределению, а случайной величины равномерному.
2.9 Определение закона распределения случайных величин
2.9.1 Определение закона распределения случайной величины по виду гистограммы
По виду гистограмм, приведенных на рисунках 2.19-2.21 делаем предположение о том, что случайная величина подчиняется равномерному закону распределения, а случайная величина соответствует нормальному закону распределения, что можно увидеть на рисунках 2.22-2.24.
... отпуска может быть на 10–20оС ниже, а его продолжительность на 20–25% меньше, чем первого отпуска. Охлаждение после отпуска проводится на воздухе. 1.1.5 Влияние термической обработки на свойства штамповых сталей Служебные свойства штампового инструмента и его стойкость в значительной степени определяются соответствующим назначением марки стали, ее термообработкой и условиями эксплуатации ...
... о начавшихся в них процессах деградации, которые в дальнейшем приведут к условным отказам. В этом случае выбросы являются закономерными, обусловлены физическими процессами и их нельзя исключать из дальнейшего рассмотрения при статистической обработке результатов испытаний. Поэтому для принятия того или иного решения проводят тщательный комплексный анализ возможных причин указанных отклонений. ...
... в процессе обучения, необходима разработка совершенно новых подходов к работе с таким видом информационных ресурсов как базы данных. Глава 2.Технология использования баз данных математических задач в процессе подготовки учащихся к ЕГЭ по математике 2.1 Реализация модели В соответствии с теорией поэтапного формирования умственных действий учащихся, подготовку к сдаче единого ...
... плана ФЭ. Большое разнообразие моделей РК приводит к необходимости использования разнообразных способов и технических средств для измерения их параметров. Как правило, статические и динамические параметры РК измеряют на разных технологических установках. Методы построения средств измерения для идентификации моделей РК могут быть сведены к следующим принципам, учитывающим особенности подключения ...
0 комментариев