7.3 Описание входного файла с исходными данными.

В качестве исходных данных используется отформатированный текстовый файл, в котором хранится информация о размерности векторов, их количестве и сами вектора данных. Файл должен иметь форму числовой матрицы. Каждая строка матрицы соответствует одному вектору признаков. Количество признаков должно совпадать с параметром NDATA. Количество столбцов равно количеству признаков плюс два. Первый столбец содержит порядковый номер вектора в общей совокупности данных (соответствует последовательности 1, 2, 3,...,NPATTERN), а в последнем столбце записаны значения указателя классификатора: 1- для вектора из первого класса, 0 – для вектора из второго класса. Все числовые параметры разделяются пробелами и записываются в кодах ASCII. Пример файла приведен в приложении 2.

7.4 Описание файла настроек.

Параметры настройки программы содержаться во входном файле “nvclass.inp”. Пример файла приведен в приложении 3. Для настройки используются следующие переменные:

TYPE - РЕЖИМ РАБОТЫ ПРОГРАММЫ

TYPE=1_1

Это значение соответствует внешнему режиму функционирования программы без обучения нейронной сети, т.е. тестирование на заранее обученной нейронной сети. При этом надо задать следующие параметры:

1.        NDATA –Размерность входных данных

2.        TESTVECTOR – Имя файла с тестируемым вектором

3.        NETWORKFILE – Имя файла с матрицами весов предварительно обученной сети

TYPE=1_2

Это значение соответствует внешнему режиму функционирования программы с обучением нейронной сети и тестированием на ней заданного вектора. Необходимо задать следующие параметры:

1.        NDATA –Размерность входных данных

2.        NPATTERN –Количество векторов признаков

3.        PATTERNFILE-Имя файла с набором векторов признаков

4.        TESTVECTOR – Имя файла с тестируемым вектором;

5.        RESNETFNAME- Имя выходного файла с матрицами весов обученной сети.

TYPE=2_1

Данное значение соответствует внутреннему режиму с проверкой одного из векторов из представленной выборки. Для функционирования программы необходимо задать следующие параметры:

1.       NDATA –Размерность входных данных

2.       NPATTERN –Количество векторов признаков

3.       PATTERNFILE -Имя файла с набором векторов признаков

4.       NUMBERVECTOR -Номер тестового вектора признаков из заданной выборки

TYPE=2_2

При данном значении параметра программа будет функционировать во внутреннем режиме с последовательной проверкой всех векторов (“cross_validation”). Необходимо задать следующие параметры :

1.    NDATA -Размерность входных данных

2.    NPATTERN –Количество векторов признаков

3.    PATTERNFILE -Имя файла с набором векторов признаков

 

NDATA РАЗМЕРНОСТЬ ВЕКТОРОВ ПРИЗНАКОВ

Задается размерность векторов признаков, или количество признаков в каждом векторе наблюдений. Этой величине должны соответствовать все входные данные в текущем сеансе работы программы.

 

NPATTERN КОЛИЧЕСТВО ВЕКТОРОВ ПРИЗНАКОВ

Этот числовой параметр характеризует объем обучающей выборки и соответствует количеству строк во входном файле PATTERNFILE.

 

PATTERNFILE ИМЯ ФАЙЛА С НАБОРОМ ВЕКТОРОВ ПРИЗНАКОВ

Имя файла, содержащего наборы векторов признаков предыстории сейсмических явлений региона с указателями классификатора.

TESTVECTOR ИМЯ ФАЙЛА С ТЕСТИРУЕМЫМ ВЕКТОРОМ ПРИЗНАКОВ.

Имя файла, содержащего вектор признаков, который необходимо идентифицировать. Файл должен иметь форму строки (числа разделяются пробелами). Количество признаков должно соответствовать переменной NDATA.

NETWORKFILE ИМЯ ФАЙЛА С МАТРИЦАМИ ВЕСОВ ПРЕДВАРИТЕЛЬНО ОБУЧЕННОЙ СЕТИ.

В этом параметре задано имя файла, содержащего матрицы весов предварительно обученной нейронной сети с фиксированной размерностью входных данных. Файл формируется на предыдущих этапах работы программы. Необходимо учитывать количество признаков NDATA (явно указанных в имени файла, под которые проектировалась нейронная сеть (NDATA соответствует количеству входов сети) и символьную аббревиатуру региона, из которого получена сейсмическая информация.

RESNETFNAME ИМЯ ВЫХОДНОГО ФАЙЛА С МАТРИЦАМИ ВЕСОВ ОБУЧЕННОЙ СЕТИ

Имя файла, содержащего параметры спроектированной и обученной нейронной сети в данном сеансе эксплуатации программы. В имени файла обязательно следует указывать символьную абревиатуру региона, из которого получена сейсмическая информация и размерность векторов признаков NDATA обрабатываемой информации, чтобы избежать путаницы в интерпретации разных моделей. (Например, norv18.net или isrl9.net).

NUMBERVECTOR ПОРЯДКОВЫЙ НОМЕР ВЕКТОРА ПРИЗНАКОВ

Этот параметр соответствует номеру вектора признаков (номеру строки в первом столбце матрицы) из файла PATTERNFILE. Этот вектор признаков с указателем классификатора в дальнейшем будет интерпретироваться как тестовый вектор. Он удаляется из всего набора , а оставшиеся NPATTERN-1 векторов будут использованы в качестве обучающей выборки.

REPORTFNAME ИМЯ ФАЙЛА ОТЧЕТА

Имя файла с результатами работы программы.

InitWeigthFunc ФУНКЦИЯ ИНИЦИАЛИЗАЦИИ НАЧАЛЬНЫХ ВЕСОВЫХ КОЭФФИЦИЕНТОВ СЕТИ.

InitWeigthFunc=Gauss

Начальные матрицы весовых коэффициентов будут выбраны как нормально распределенные случайные величины с математическим ожиданием Alfa и среднеквадратическом отклонении Sigma ( N[Alfa,Sigma]).

InitWeigthFunc=Random

Начальные матрицы весовых коэффициентов будут выбраны как равномерно распределенные случайные величины в диапазоне [-Constant,Constant].

(Значение по умолчанию – InitWeigthFunc= RandomDistribution[-3,3], т.е. Constant=3)

 

Constant ДИАПАЗОН РАВНОМЕРНО РАСПРЕДЕЛЕННЫХ СЛУЧАЙНЫХ ВЕЛИЧИН

Смотри InitWeigthFunc …

Sigma СРЕДНЕКВАДРАТИЧЕСКОЕ ОТКЛОНЕНИЕ НОРМАЛЬНО РАСПРЕДЕЛЕН-НЫХ СЛУЧАЙНЫХ ВЕЛИЧИН

Смотри InitWeigthFunc …

Alfa МАТЕМАТИЧЕСКОЕ ОЖИДАНИЕ НОРМАЛЬНО РАСПРЕДЕЛЕННЫХ СЛУЧАЙНЫХ ВЕЛИЧИН

Смотри InitWeigthFunc …

WidrowInit NGUYEN-WIDROW ИНИЦИАЛИЗАЦИЯ .

Параметр позволяет сформировать начальные весовые коэффициенты по методике предложенной Nguyen и Widrow. Возможные варианты: “Yes” – провести соответствующую инициализацию. “No”- не использовать эту процедуру.(Значение по умолчанию – “No”)

 

Shuffle ПЕРЕМЕШИВАНИЕ ВЕКТОРОВ ПРИЗНАКОВ

При значении параметра “Yes” – входные вектора будут предварительно перемешаны. При “No” – вектора будут подаваться на вход сети в той последовательности, в которой они расположены во входном файле (PATTERNFILE). (Значение по умолчанию – “Yes”).

Scaling ПРЕДВАРИТЕЛЬНАЯ ОБРАБОТКА ВЕКТОРОВ ПРИЗНАКОВ.

Этот параметр служит для использования в рамках программы “nvclass” процедуры масштабирования входных данных. Эта процедура позволяет значительно ускорить процесс обучения нейронной сети, а также качественно улучшает результаты тестирования. Возможные значения параметра: “Yes”,”No”. (Значение по умолчанию – “Yes”).

LearnToleranse ТОЧНОСТЬ ОБУЧЕНИЯ.

Параметр определяющий качество обучения нейронной сети. При достижении заданной точности ε для каждого вектора признаков из обучающей выборки настройка весовых коэффициентов сети заканчивается и сеть считается обученной. (Значение по умолчанию – 0.1).

 

Eta КОЭФФИЦИЕНТ ОБУЧЕНИЯ НЕЙРОННОЙ СЕТИ.

Значение коэффициента задает скорость и качество обучения нейронной сети. Используется для алгоритма обратного распространения ошибки. (Значение по умолчанию–1.0)

MaxLearnCycles МАКСИМАЛЬНОЕ КОЛИЧЕСТВО ИТЕРАЦИЙ ОБУЧЕНИЯ

Параметр задает количество итераций после которых процесс обучения будет автоматически завершен. (Величина по умолчанию- 2000)

Loop КОЛИЧЕСТВО ПОВТОРОВ ОБУЧЕНИЯ.

Параметр задает величину полных циклов функционирования программы (целое нечетное число). В каждом цикле формируются начальные матрицы весов производится обучение сети и осуществляется классификация тестового вектора. Результаты всех циклов обрабатываются, и формируется итоговое заключение . (Значение по умолчанию=1).

7.5 Алгоритм работы программы.

Алгоритм работы программы зависит от режима, в котором она функционирует. Однако, для всех из них можно выделить базовый набор операций:

1.    Инициализация сети;

2.    Настройка;

3.    Проверка тестовых векторов.

Инициализация

В этом разделе происходит считывание всех данных из соответствующих файлов (файл с примерами обучающей выборки, файл с конфигурацией обученной сети, файл с примерами для тестирования). Затем, в зависимости от режима функционирования, либо происходит инициализация всех весовых коэффициентов сети заданным образом, либо сразу начинается проверка тестовых векторов на обученной заранее нейронной сети, конфигурация которой считана из файла.

Настройка.

Если выбранный режим предусматривает выполнение алгоритма обучения нейронной сети, то программа, после считывания исходных данных, и начальной инициализации весовых коэффициентов выполняет процедуру их настройки до тех пор, пока не выполнится одно из условий остановки. Либо значение ошибки обучения достигнет желаемого уровня и сеть будет считаться обученной, либо количество итераций обучения превысит предварительно заданное максимальное число. По мере выполнения алгоритма автоматически формируется полный отчет о состоянии сети.

Проверка тестовых векторов.

На этом этапе происходит тестирование заданных векторов. Причем возможны два варианта: тестируемый вектор может быть считан из файла, а также можно задать номер тестируемого вектора в выборке исходных данных и тогда он не будет использован во время обучения. Результаты проверки записываются в файл отчета.

7.6 Эксплуатация программного продукта.

Перед тем, как приступить к эксплуатации программного продукта рекомендуется ознакомиться с форматом данных, в котором должны быть записаны исходная выборка векторов и с основными переменными файла настроек программы.

Для корректной работы в дальнейшем желательно придерживаться определенной последовательности действий:

1.    Подготовить исходные данные согласно принятом формату.

2.    Изменить в соответствии с требованиями определенные поля в файле настроек.

3.    Запустить программу.

4.    Проанализировать результат, записанный в соответствующем файле.

7.7 Результат работы программы.

Для исследований возможностей разработанного программного обеспечения были проведены различные эксперименты, основная цель которых - подобрать значения параметров настройки программы, при которых итоговые результаты ее работы содержали наименьшее количество ошибок идентификации. Методика, по которой оценивалась ошибка классификации, основана на подходе “cross-validation”.

Эксперименты проводились на данных, полученных из сейсмограмм, записанных в Норвежской сейсмологической сети. В исходной выборке насчитывалось 86 событий из разных классов, из них соответственно 50 – землетрясений и 36 – взрывов. Исследования проводились для разного числа признаков идентификации, а именно для 18 и 9 размерных векторов признаков.

Первая серия экспериментов была проведена на 18 размерных векторах. Структура нейронной сети соответствовала <18,9,1>, где 18 – количество нейронов во входном слое, 9- число нейронов на первом скрытом слое , 1-размерность выхода сети. Увеличение нейронов на скрытом слое не приводило к улучшению результатов, а при уменьшении возникали дополнительные ошибки, в следствии чего такая структура предлагается в качестве оптимальной.

Далее представлены описание параметров настройки программы во входных файлах и результаты тестирования.

В качестве начальной конфигурации использовались следующие значения настраиваемых параметров в файле “nvclass.inp”:

TYPE=2_2

NDATA=18

NPATTERN=86

PatternFile=norv18.pat

NetStructure=[18,9,1]

WidrowInit=No

Shuffle=Yes

Scaling=Yes

Eta=0.7

MaxLearnCycles=1950

Loop=5

Результаты экспериментов отражают количество ошибок идентификации от различных параметров настройки программы.

Для примера рассмотрим влияние процедуры начальной инициализации весовых коэффициентов и точности обучения на ошибку классификации. На рисунках 7.1 и 7.2 едставлены эти результаты.


Отметим, что более стабильные результаты получаются в случае инициализации весов при помощи нормально распределенных величин. Можно добиться всего лишь 4-5 ошибок из 86, что соответствует ошибке идентификации равной 5-6 процентов.

Для 9 размерных векторов признаков была использована следующая структура нейронной сети <9,5,1>, т.е. 5 нейронов на скрытом слое было достаточно для получения хороших результатов.

В качестве примера приведем исследования аналогичные тем, которые описаны выше.(Рис. 7.3, 7.4).


Последнюю диаграмму можно представить в виде.


Уже сейчас можно сделать вывод, что при использовании не всего набора признаков идентификации, а некоторой части признаков результаты заметно улучшаются. Причем для случая 9 –размерных признаков особую роль процедура начальной инициализации не играет.

Представленные эксперименты не отражают полной картины о возможностях применения нейронных сетей для идентификации типа сейсмического события, но они экспериментально подтверждают эффективность нейросетевых технологий для решения этой задачи.


Информация о работе «Классификация сейсмических сигналов на основе нейросетевых технологий»
Раздел: Кибернетика
Количество знаков с пробелами: 114641
Количество таблиц: 1
Количество изображений: 28

Похожие работы

Скачать
110516
5
18

... МП к некритическому экстраполированию результата считается его слабостью. Сети РБФ более чувствительны к «проклятию размерности» и испытывают значительные трудности, когда число входов велико. 5. МОДЕЛИРОВАНИЕ НЕЙРОННЫХ СЕТЕЙ ДЛЯ ПРОГНОЗИРОВАНИЯ СТОИМОСТИ НЕДВИЖИМОСТИ   5.1 Особенности нейросетевого прогнозирования в задаче оценки стоимости недвижимости Использование нейронных сетей можно ...

Скачать
15022
0
0

... в связи с необходимостью упорядоченного сообщения с высоким приоритетом при радикальном изменении окружающих условий и двунаправленностью каналов. Возможности вычисления путей маршрутизации можно применять при построении интегральных схем и проектирования кристаллов процессоров. Нейрокомпьютеры с успехом применяются при обработке сейсмических сигналов в военных целях для определения коорди

Скачать
84679
0
11

... (ШД), адресов (ША) и управления (ШУ). Однокристальные микропроцессоры получаются при реализации всех аппаратных средств процессора в виде одной БИС или СБИС (сверхбольшой интегральной схемы). По мере увеличения степени интеграции элементов в кристалле и числа выводов корпуса параметры однокристальных микропроцессоров улучшаются. Однако возможности однокристальных микропроцессоров ограничены ...

Скачать
20016
0
6

... данных а разбивать входные данные на кластеры. •Рекурсивные сети Элмана, способные обрабатывать последовательности векторов. •Вероятностные сети, аппроксимирующие Байесовские классификаторы с любой степенью точности.   Общие принципы, характерные для нейросетей Согласно общепринятым представлениям наиболее общими принципами, характерными для современных нейросетей являются: коннекционизм, ...

0 комментариев


Наверх