5.4 Выводы по разделу.
Конечно, описанными выше методиками не исчерпывается все разнообразие подходов к ключевой для нейро-анализа проблеме формирования пространства признаков. Например, существуют различные методики, расширяющие анализ главных компонент. Также, большего внимания заслуживают генетические алгоритмы. Необъятного не объять. Главное, чтобы за деталями не терялся основополагающий принцип предобработки данных: снижение существующей избыточности всеми возможными способами. Это повышает информативность примеров и, тем самым, качество нейропредсказаний.
6. Реализация нейросетевой модели и исследование ее технических характеристик.
Ранее было показано, какими средствами нейроинформатики можно пытаться решить задачу идентификации типа сейсмического источника, какие процедуры целесообразно применять при предварительной подготовке данных, был приведен небольшой обзор различных алгоритмов обучения известных нейроархитектур. В этой главе представлено решение задачи на базе двухслойного персептрона, так как именно он был выбран на начальном этапе исследований. Дано также описание алгоритма обучения и методов его оптимизации.
6.1 Структура нейронной сети.
Итак, для решения задачи идентификации типа сейсмического события предлагается использовать одну из самых универсальных нейроархитектур – многослойный персептрон, а точнее его двухслойную реализацию (рис. 6.1). Как показали эксперименты, увеличение числа скрытых слоев не приводит к лучшим результатам, а лишь усложняет процесс обучения, поэтому и была выбрана именно реализация с одним скрытым слоем нейронов.
На вход сети подается p-мерный вектор признаков {xi, i=1,2,…,p}. Для определенности будем рассматривать случай, когда p=9, хотя исследования проводились и для p=5, p=18. Оптимальное количество нейронов на скрытом слое H подбиралось экспериментально для разных p. Соответственно при p = 9 достаточно брать H равным также 9 или немного больше. Для разбиения исходных данных на два класса на выходе сети достаточно одного нейрона. Между входным и скрытым слоями, а также между скрытым и выходным слоями использовалась полносвязная структура.
С учетом этих дополнений опишем принятые на рисунке 7.1 обозначения:
p – размерность исходных данных (количество признаков используемых для классификации);
H – число нейронов на скрытом слое;
xi – компонента входного вектора признаков, i = 1,…,p;
x0 º 1 – постоянное воздействие используемое для работы нейронной сети;
wji – весовые коэффициенты между входным и скрытым слоями, i = 0,1,…,p , j = 1,…,H;
vk - весовые коэффициенты между скрытым и выходным слоями, k = 0,1,…,H.
zj – значение выхода j-го нейрона скрытого слоя; z0 º 1, j = 1,…,H;
y – значение выходного нейрона сети (выход сети)
(12)
f1(x) –функция активации нейронов скрытого слоя;
f2(x) –функция активации нейрона выходного слоя.
В качестве функции активации f1(x) для нейронов скрытого слоя и f2(x) для единственного нейрона на выходе сети предлагается использовать одну и ту же функцию, а именно сигмоидную функцию активации, для краткости будем обозначать ее как f(x):
,
с производной в виде
.
Вид такой функции представлен на рис.6.2
Т.к. значения функции f(x) ограничены в диапазоне [0, 1], результат сети y(x) может принимать любые действительные значения из этого же диапазона, в следствии чего логично интерпретировать выходы сети следующим образом: если y(x) > 0.5, то вектор принадлежит к одному классу (взрывы), в противном случае к другому (землетрясения).
6.2 Исходные данные.
На вход нейронной сети предлагается подавать вектора признаков составленные из сейсмограмм. О том, какие признаки были использованы для этой задачи и как они получены, было рассказано ранее в разделе 3.1. Стоит отметить, что проблема формирования векторов признаков – это исключительно проблема сейсмологии. Поэтому для исследования эффективности применения нейронных сетей в качестве исходных данных были использованы уже готовые выборки векторов, которые содержали в себе примеры и землетрясений и взрывов.
Размерность векторов признаков p=9, хотя , как было отмечено в предыдущем разделе, проводились эксперименты и с другим количеством признаков.
Для работы с нейросетью рекомендуется использовать исходные данные не в первоначальном виде, а после предварительной обработки при помощи процедуры индивидуальной нормировки по отдельному признаку, описанной в разделе 5.2. Это преобразование состоит в следующем:
где
xi – исходное значение вектора признаков, точнее его i-я компонента;
xi,min – минимальное значение по i-му признаку, найденное из всей совокупности исходных данных, включающей оба класса событий;
xi,max – максимальное значение по i-му признаку …
Выбор именно этой нормировки, а не более универсальных, которые описаны в разделе 5, в настоящих исследованиях продиктованы тем обстоятельством, что непосредственно признаки измеренные по сейсмограммам, подвергаются последовательно двум нелинейным преобразованиям в соответствии с функциями
y=Ln(x) и z=(1/7)(y1/7-1),
и уже из этих значений формируются обучающие вектора. Такие преобразования приводят к большей кластеризации точек в многомерном пространстве, однако диапазон изменения каждого из признаков не нормирован относительно интервала [-1, 1], а выбранная нормировка позволяет без потери информации перенести все входные значения в нужный диапазон.
... МП к некритическому экстраполированию результата считается его слабостью. Сети РБФ более чувствительны к «проклятию размерности» и испытывают значительные трудности, когда число входов велико. 5. МОДЕЛИРОВАНИЕ НЕЙРОННЫХ СЕТЕЙ ДЛЯ ПРОГНОЗИРОВАНИЯ СТОИМОСТИ НЕДВИЖИМОСТИ 5.1 Особенности нейросетевого прогнозирования в задаче оценки стоимости недвижимости Использование нейронных сетей можно ...
... в связи с необходимостью упорядоченного сообщения с высоким приоритетом при радикальном изменении окружающих условий и двунаправленностью каналов. Возможности вычисления путей маршрутизации можно применять при построении интегральных схем и проектирования кристаллов процессоров. Нейрокомпьютеры с успехом применяются при обработке сейсмических сигналов в военных целях для определения коорди
... (ШД), адресов (ША) и управления (ШУ). Однокристальные микропроцессоры получаются при реализации всех аппаратных средств процессора в виде одной БИС или СБИС (сверхбольшой интегральной схемы). По мере увеличения степени интеграции элементов в кристалле и числа выводов корпуса параметры однокристальных микропроцессоров улучшаются. Однако возможности однокристальных микропроцессоров ограничены ...
... данных а разбивать входные данные на кластеры. •Рекурсивные сети Элмана, способные обрабатывать последовательности векторов. •Вероятностные сети, аппроксимирующие Байесовские классификаторы с любой степенью точности. Общие принципы, характерные для нейросетей Согласно общепринятым представлениям наиболее общими принципами, характерными для современных нейросетей являются: коннекционизм, ...
0 комментариев