11.  Теорема о среднем.

Если функция f(x) непрерывна на отрезке [a; b], то существует такая точка [a; b], что

т. е. определенный интеграл от переменной функции равен произведению значения подынтегральной функции в некоторой промежуточной точке ξ отрезка интегрирования [a; b] и длины b-a этого отрезка.

 

12.  Производная определенного интеграла по верхнему пределу. Формула Ньютона-Лейбница.

До сих пор мы рассматривали определенный интеграл с постоянными пределами интегрирования a и b. Если оставить постоянным нижний предел интегрирования a, а верхний х изменять так, чтобы x є [a; b], то величина интеграла будет изменяться. Интеграл вида:

 x є [a; b],

называется определенным интегралом с переменным верхним пределом и является функцией верхнего предела х. Здесь для удобства переменная интегрирования обозначена буквой t, а верхний предел интегрирования – буквой х.

Теорема. Производная определенного интеграла от непрерывной функции f(x) по его переменному верхнему пределу существует и равна подынтегральной функции, в которой вместо переменной интегрирования подставлено значение верхнего предела:

Формула Ньютона-Лейбница. Формула Ньютона-Лейбница дает правило вычисления определенного интеграла: значение определенного интеграла на отрезке [a; b] от непрерывной функции f(x) равно разности значений любой ее первообразной, вычисленной при x=b и x=a.

 - (9)

13.  Замена переменной и интегрирования по частям в определенном интеграле.

Замена переменной в определенном интеграле. Этот метод, как и в случае неопределенного интеграла, позволяет упростить вычисления, т. е. привести подынтегральное выражение к соответствующей табличной форме. Применение замены переменной в определенном интеграле базируется на следующей теореме.

Теорема. Если функция f(x) непрерывная на отрезке [a; b], а функция x=φ(t) непрерывно дифференцируема на отрезке [t1; t2], причем φ([t1; t2])=[a; b] и φ(t1)=a, φ(t2)=b, то справедлива формула:

- (10)

Интегрирование по частям в определенном интеграле. Пусть u(x) и v(x) – дифференцируемые на отрезке [a; b] функции переменной х. Тогда d(uv)=udv+vdu. Проинтегрируем обе части последнего равенства на отрезке [a; b]:

- (11)

С другой стороны, по формуле Ньютона-Лейбница

Следовательно, формула (11) принимает вид:

 - (12)

Формула (12) называется формулой интегрирования по частям в определенном интеграле.

15.  Вычисление площадей плоских фигур.

Площадь криволинейной трапеции, ограниченной кривой y=f(x) [f(x) ≥ 0], прямыми x=a и x=b и отрезками [a; b] оси Ох, вычисляется по формуле:

Площадь фигуры, ограниченной кривыми y=f1(x) и y=f2(x)[f1(x) ≤ f2(x)] и прямыми x=a и x=b, находится по формуле:

Если кривая задана параметрическими уравнениями x=x(t), y=y(t), то площадь криволинейной трапеции, ограниченной этой кривой, прямыми x=a, x=b и отрезком [a; b] оси Ох, выражается формулой:

где t1 и t2 определяются из уравнений a=x(t1), b=x(t2) [y(t) ≥ 0 при t1 ≤ t ≤ t2].

Площадь криволинейного сектора, ограниченного кривой, заданной в полярных координатах уравнением ρ=ρ(θ) и двумя полярными радиусами θ=α, θ=β (α < β), выражается интегралом:

16.  Определение и вычисление длины кривой, дифференциал кривой.

Если кривая y=f(x) на отрезке [a; b] - гладкая (т. е. производная y’=f’(x) непрерывна), то длина соответствующей дуги этой кривой находится по формуле:

При параметрическом задании кривой x=x(t), y=y(t) [x(t) и y(t) – непрерывно дифференцируемые функции] длина дуги кривой, соответствующая монотонному изменению параметра t от t1 до t2, вычисляется по формуле:

Если гладкая кривая задана в полярных системах координатах уравнением ρ=ρ(θ), α ≤ θ ≤ β, то длина дуги равна:

Дифференциал длины дуги. Длина дуги кривой определяется формулой:

где y=f(x)  [a; b]. Предположим, что в этой формуле нижний передел интегрирования остается постоянным, а верхний изменяется. Обозначим верхний предел буквой х, а переменную интегрирования буквой t. Длина дуги будет функцией верхнего предела:

Практические задания

 

1. Найти неопределенный интеграл, результат проверить дифференцированием:

 

1) .

Решение:

Проверка:

 - верно.

___________________________________________________________________________

2) .

Решение:

Проверка:

 - верно.

__________________________________________________________________________________

3) .

Решение:

Проверка:

 - верно.

___________________________________________________________________________

4) .

Решение:

Проверка:

 - верно.

___________________________________________________________________________

5) .

Решение:

Проверка:

 - верно.

___________________________________________________________________________

6) .

Решение:

Проверка:

 - верно.

___________________________________________________________________________

7) .

Решение:

Проверка:

 - верно.

___________________________________________________________________________

8)

Решение:

Проверка:

 - верно.

__________________________________________________________________________________

9) .

Решение:

Проверка:

 - верно.

___________________________________________________________________________

2. Найти неопределенные интегралы:

1) .

Решение:

___________________________________________________________________________

2) .

Решение:

___________________________________________________________________________

3) .

Решение:

___________________________________________________________________________

4) .

Решение:

___________________________________________________________________________

5) .

Решение:

 

___________________________________________________________________________

6) .

Решение:

___________________________________________________________________________

7) .

Решение:

___________________________________________________________________________

8) .

Решение:

___________________________________________________________________________

9) .

Решение:

___________________________________________________________________________

10) .

Решение:

__________________________________________________________________________________

11) .

Решение:

___________________________________________________________________________

12) .

Решение:

___________________________________________________________________________

13) .

Решение:

___________________________________________________________________________

14) .

Решение:

___________________________________________________________________________

15) .

Решение:

___________________________________________________________________________

3. Вычислить определенный интеграл:

 

1) .

Решение:

___________________________________________________________________________

2) .

Решение:

___________________________________________________________________________

3) .

Решение:

____________________________________________________________________________

4. Найти несобственные интегралы или доказать их расходимость:

 

1) .

Решение:

 - интеграл I рода.

 - сходящийся.

____________________________________________________________________________

2) .

Решение:

 - интеграл II рода.

 - расходящийся.

____________________________________________________________________________

3) .

Решение:

___________________________________________________________________________________


 


Информация о работе «Интеграл и его свойства»
Раздел: Математика
Количество знаков с пробелами: 22351
Количество таблиц: 0
Количество изображений: 8

Похожие работы

Скачать
62794
0
2

... они не требуют от учащихся дополнительных знаний по физике, а, следовательно, удовлетворяют как принципу научности, так и принципу доступности материала.   2.2. Изучение свойств определенного интеграла с помощью физических моделей При изучении интеграла существенным является отбор свойств, которые необходимо знать ученикам. Их должно быть достаточно для рассмотрения приложений интеграла и в ...

Скачать
20635
8
12

... между этими графиками равна b ò ((f(x)–g(x))dx a Функции f(x) и g(x) произвольные и неотрицательные b b b S=ò f(x)dx – ò g(x)dx = ò (f(x)–g(x))dx a a a  b b S=ò f(x)dx + ò g(x)dx a a Применение интеграла I. В физике. Работа силы (A=FScosa, cosa ¹ 1) Если на частицу действует сила F, кинетическая ...

Скачать
15080
0
15

... выражением,  – переменной интегрирования; отрезок  называется промежутком интегрирования. Теорема 1. Если функция  непрерывна на отрезке , то она интегрируема на этом отрезке. 2.  Геометрический смысл определенного интеграла Пусть на отрезке  задана непрерывная неотрицательная функция . Криволинейной трапецией называется фигура, ограниченная сверху графиком функции y = f(x), снизу – осью ...

Скачать
16141
0
0

... элементарной функцией, то первообразная от элементарной функции может оказаться и не представимой с помощью конечного числа элементарных функций. Из определения 2 следует: 1.Производная от неопределенного интеграла равна подынтегральной функции, т.е.если F′ (x)= f(x), то и  (∫ f(x)dx)′= (F(x)+C)′=f(x). (4) Последнее равенство нужно понимать в том смысле, что ...

0 комментариев


Наверх