0 ∆ … 0 = ∆ 0 1 … 0

…………… ……………

0 0 … ∆ 0 0 … 1


Таким образом, АВ = ∆Е. Аналогично доказывается и равенство

ВА = ∆Е.

Пусть теперь А – невырожденная матрица (т.е. ∆ ≠ 0). Тогда, умножив обе части равенства (5) на числовой множитель 1/∆ , получим


(7)

Сравнивая равенства (5) и (7) и учитывая единственность обратной

-12-

матрицы, замечаем, что


Таким образом, доказано, что, во-первых, обратимы только невырожденные матрицы, и, во-вторых, для матрицы А обратной является матрица


Пусть А невырожденная матрица, тогда АА-1 = Е. Переходя в этом равенстве к определителям, получаем А А-1 = 1, откуда

А-1 = А -1.

Таким образом, определитель обратной матрицы равен обратной величине определителя данной матрицы. Из этого следует, что если матрица А – невырожденная, то обратная матрица А-1 также невырожденная.

Пусть теперь дана матрица А-1. Для неё обратной будет матрица

-1)-1.Поэтому из определения обратной матрицы будем иметь

А-1-1) -1 = Е. Умножив это соотношение слева на А, получим

АА-1-1) -1 = АЕ или (А-1) -1 = А.


-13-

Пример 1. Найти матрицу обратную матрице


1 2 3

А = –3 –1 1 .

2 1 –1


Р е ш е н и е. Проверим, обратима матрица А или нет, т.е. является ли она невырожденной:


1 2 3 1 2 5

А = –3 –1 1 = –3 –1 0 = 5 –3 1 = 5 (–3 + 2) = –5 ≠ 0.

2 1 –1 2 1 0 2 1


Найдем алгебраические дополнения всех элементов матрицы А:


А11 = –1 1 = 0; А12 = –­­ –3 1 = –1;

1 –1 2 –1

А13 = –3 –1 = –1; А21 = – 2 3 = 5;

2 1 1 –1

А22 = 1 3 = –7; А23 = – 1 2 = 3;

2 –1 2 1

А31 = 2 3 = 5; А32 = 1 3 = –10;

–1 1 –3 1

А33 = 1 2 = 5.

–3 –1

Составим присоединённую матрицу для матрицы А:


0 5 5

–1 –7 –10 .

–1 3 5

Отсюда находим обратную матрицу:

0 5 5

А-1 = – –1 –7 –10 .

–1 3 5


-14-

Пример 2. Найти неизвестную матрицу Х из уравнения АХ = В, если:


А = 2 3 ; В = 3 4 .

1 2 -1 1


Р е ш е н и е. Умножив обе части данного матричного уравнения слева на матрицу А-1, получим:

А-1АХ = А-1В; Х = А-1В.

Найдем А-1: ∆А = 1, А11 = 2, А12 = -1, А21 = -3, А22 = 1, следовательно,


А-1 = 2 -3 .

-1 1

Найдем матрицу Х:


Х = А-1В = 2 -3 3 4 = 9 5 .

-1 1 -1 1 -4 -3


-15-

1.4. Ранг матрицы.


Рассмотрим произвольную прямоугольную матрицу

а11 … а1n

A = …………… (8)

am1 … amn


Выделим некоторое число k строк этой матрицы и такое же число столбцов. Элементы матрицы (8), стоящие на пересечение выделенных строк и столбцов, образуют квадратную матрицу k-го порядка. Определитель этой матрицы называется минором k-го порядка матрицы А. Если не все числа аijматрицы А равны нулю, то всегда можно указать число r такое, что у матрицы А имеется минор,

имеющий порядок r + 1 и выше, равен нулю.

Число r, представляющее собой наибольший из порядков отличных от нуля миноров матрицы А, называется рангом матрицы и обозначается rangA. Если все элементы аij равны нулю, то ранг матрицы принимается равным нулю. Отличный от нуля минор r-го порядка матрицы A (таких миноров у матрицы А может быть несколько, но все они имеют один и тот же порядок r) называется базисным минором матрицы А. Строки и столбцы, из которых построен базисный минор, называют базисными. Понятие ранга матрицы широко применяется в различных приложениях теории матриц.

Выделим в матрице А произвольно k строк. Пусть это будут строки

a1, а2, …, аk:


аα11, аα12, …, аα1n;

аα21, аα22, …, аα2n;

……………………

аαk1, аαk2, …, аαkn.


-16-

Если существуют такие числа λ1, λ2, …, λk, не все равные нулю, что для элементов некоторой другой, отличной от выделенной, строки i выполняются следующие соотношения:


(9)


то говорят, что i-я строка линейно выражается через строки

α1, α2, …, αk. В случае, если равенства (9) выполняются тогда и только тогда, когда все числа λ1, λ2, …, λk – нули, то говорят, что i-я строка линейно зависима от строк α1, α2, …, αk. Аналогичным образом можно ввести понятие линейной зависимости и линейной независимости между столбцами матрицы.

Теорема 1.2.(о базисном миноре) Любая строка матрицы А является линейной комбинацией её базисных строк.

Д о к а з а т е л ь с т в о. Предположим, что базисный минор матрицы (8) расположен в её верхнем левом углу, т.е. в первых r строках и первых r столбцах. Такое предположение не уменьшает общности рассуждения. Пусть k – номер любой строки матрицы А (k может принимать значения от 1 до m), а l – номер любого её столбца (l может принимать значения от 1 до n).

Рассмотрим следующий минор матрицы (8):


a11 a12 … a1r a1l

a21 a22 … a11 a1l

∆ = ……………………… (10)

ar1 ar2 … arr arl

………………………

ak1 ak2 … akr akl


Если k


Информация о работе «Способы решения систем линейных уравнений»
Раздел: Математика
Количество знаков с пробелами: 25754
Количество таблиц: 0
Количество изображений: 6

Похожие работы

Скачать
27375
1
5

... , придумать “свой метод", догадаться что-то прибавить и отнять, выделить полный квадрат, на что-то разделить и умножить и т.д. Если работа в поисках более рациональный способ решения систем линейных уравнений с двумя переменными - методом подстановки будет успешна, то практическая значимость будет очевидна. Список использованной литературы 1.         Алгебра 8 класс. Н.Я. Виленкин. Москва, ...

Скачать
10102
2
9

... свести к вычислению четырех определителей третьего порядка.   3-ий учебный вопрос ТЕОРЕМА КРАМЕРА Применим рассмотренную теорию определителей к решению систем линейных уравнений. 1.  Система двух линейных уравнений с двумя неизвестными. (3) Здесь х1, х2 – неизвестные; а11, …, а22 – коэффициенты при неизвестных, занумерованные двумя индексами, где первый ...

Скачать
43269
5
8

... . При этом собственно нахождение обратной матрицы – процесс достаточно трудоемкий и его программирование вряд ли можно назвать элементарной задачей. Поэтому на практике чаще применяют численные методы решения систем линейных уравнений. К численным методам решения систем линейных уравнений относят такие как: метод Гаусса, метод Крамера, итеративные методы. В методе Гаусса, например, работают над ...

Скачать
20755
0
0

... 10.4 9.7 9.7 -8.4 Результат вычислений по методу Гаусса x1 = 5.0000000000E+00 x2 = -4.0000000000E+00 x3 = 3.0000000000E+00 x4 = -2.0000000000E+00 2.2 Программа решения систем линейных уравнений по методу Зейделя 2.2.1. Постановка задачи. Требуется решить систему линейных алгебраических уравнений с вещественными коэффициентами вида a11x1 + a12x2 + … + a1nxn = b1 , a21x2 + ...

0 комментариев


Наверх