1. Предмет и задачи теории игр.
Подавляющее большинство социально-экономических решений приходится принимать с учетом противоречивых интересов, относящихся либо к различным лицам или организациям, либо к различным аспектам рассматриваемого явления, либо к тому и другому. В таких случаях невозможно применить традиционные методы оптимизации. В обычных экстремальных задачах речь идет о выборе решения одним лицом, и результат решения зависит от этого выбора, то есть определяется действиями только одного лица. В такую схему не укладываются ситуации,где решения, оптимальные для одной стороны, совсем не оптимальны для другой и результат решения зависит от всех конфликтующих сторон.
Конфликтный характер таких задач не предполагает вражды между участниками, а свидетельствует о различных интересах. Необходимость анализировать подобные ситуации вызвала к жизни специальный математический аппарат - теорию игр.
Теория игр предстакляет собой часть обширной теории, изучающей процессы принятия оптимальных решений. Она дает формальный язык для описания процессов принятия сознательных, целенаправленных решений с участием одного или нескольких лиц в условиях неопределенности и конфликта, вызываемого столкновением интересов конфликтующих сторон.
Целью теории игр является выработка рекомендаций по рациональному образу действий участников в конфликтных ситуациях, то есть определение оптимальной стратегии каждого из них.
Первые работы по ТИ ( Цермело, Борель, фон Нейман ) относятся к началу ХХ века. Но только появление и широкое распространение ЭВМ привлекло к ТИ внимание широкого круга специаоистов.
Теория стратегических игр в своей математической форме возникла в 30-х годах нашего века. Ее создателем считается Джон фон Нейман. Первой фундаментальной книгой по теории игр была изданная в 1944 году работа "Теория игр и экономическое поведение"(Нейман Д., Моргенштерн О. М.:Наука,1970)
Практическое значение ТИ состоит в том, что она служит основой моделирования игровых экспериментов, в частности, деловых игр, позволяющих определять оптимальное поведение в сложных ситуациях.
Примеры практического и в том числе экономического содержания призваны скорее содержательно интерпретировать математические положения теории игр, чем указывать на фактические или возможные их приложения. От реальной конфликтной ситуации игра отличается тем, что ведется по вполне определенным правилам. Реальные конфликты обычно трудно поддаются формальному описанию, поэтому любая игра является упрощением исходной задачи, в ней отражаются лишь основные, первостепенные факторы, отражающие суть процесса или явления.
В зависимости от того, какими данными располагает исследователь и какую задачу перед собой ставит, могут быть сформулированы различные теоретикоигровые модели. Различают три основных типа задач:
1. Нахождение оптимального исхода. В качестве исхода в общем случае может рассматриваться социально-экономическая ситуация. В зависимости от содержания задачи ситуацию можно описать наборами благ, получаемых каждым игроком (выигрышами), или исходом может быть избрание того или иного кандидата, принятие того или иного проекта, договора и т.д.При этом в общем случае надо найти коалиционную структуру и коалиционные стратегии, при которых оптимальный исход реализуется.
2. Нахождение оптимального исхода при фиксированной коалиционной структуре, то есть когда нам заведомо известно, что, например, образование коалиций запрещено, невозможно или имеющаяся коалиционная структура не должна меняться по каким-либо политическим или экономическим соображениям. В этом случае общей задачей является нахождение правил принятия решений в коалициях (порядок вознаграждения ее членов), при которых данная коалиционная структура не распадется, и, значит, система будет функционировать согласно интересам и возможностям ее участников.
3. Нахождение устойчивой коалиционной структуры при заданных правилах принятия решений ( конституции, нормативных актах, уставе предприятия и др.) в коалициях.Такие задачи часто встречаются при решении экономических и социальных проблем.
Формализованные модели конфликтов известны с давних пор: это игры в буквальном смысле слова - шахматы, карты, кости и т.п. Эти игры носят характер соревнования, протекающего по известным правилам. Терминалогия, заимствованная из практики таких игр, применима и для других конфликтных ситуаций, которые рассматривает теория игр.
ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ
ИГРОЙ называется всякая конфликтная ситуация, изучаемая в теории игр и представляющая собой упрощенную, схематизированную модель ситуации. От реальной конфликтной ситуации игра отличается тем, что не включает второстепенные, несущественные для ситуации факторы и ведется по определенным правилам, которые в реальной ситуации могут нарушаться
Всякая игра включает в себя три элемента: участников игры - игроков, правила игры, оценку результатов действий игроков.
ИГРОКОМ (лицом, стороной, или коалицией) называется отдельная совокупность интересов, отстаиваемая в игре.Если данную совокупность интересов отстаивает несколько участников игры, то они рассматриваются как один игрок. Игроки, имеющие противоположные по отношению друг к другу интересы, называются противниками.В игре могут сталкиваться интересы двух или более противников.
Антагонистические игры
Игра Г = < X,Y,H>, где X,Y - непустые множества стратегий соответственно первого и второго игроков, H - функция выигрыша Н1 = -Н2 называется антагонистической.
В процессе игры каждый игрок выбирает свою стратегию, в результате чего образуется ситуация (x,y), которой соответствует выигрыш Н(x,y) для первого игрока и - Н(x,y) для второго.
В множестве всех возможных антагонистических игр выделяются классы аффинно-эквивалентных игр.
Две антагонистические игры Г = < X,Y,H> и Г’ = < X’,Y’,H’>, называются аффинно-эквивалентными, если X = X’, Y = Y’ и H’ = k H + a, где а - вещественное, а k > 0. В этом случае используется обозначение Г ~ Г’.
Антагонистические игры, в которых каждый игрок имеет конечное множество стратегий, называются матричными играми. Для задания такой игры достаточно выписать так называемую платежную матрицу, в которой строки соответствуют стратегиям первого игрока, а столбцы - стратегиям второго игрока. Элементами матрицы служат выигрыши первого игрока.
Ситуации равновесия (седловые точки).
В качестве цели при поиске решения антагонистической игры будем расматривать ситуацию равновесия, то есть устойчивое и выгодное решение.
В матричных играх ситуация i*, j* называется приемлемой для первого игрока, если a ij* £ ai*j* и приемлемой для второго игрока , если ai*j* £ a i*j.
Таким образом, всякое отклонение отприемлемой ситуации уменьшает выигрыш первого игпрока и увеличивает проигрыш второго.
Ситуация ( i*, j* ) называется равновесной, если она приемлема для обоих игроков. a ij* £ ai*j* £ a i*j . Применительно к антагонистическим играм говорят о седловых точках на поверхности выигрыша ( на них достигается max по первой координате и min по второй.
Свойства седловых точек:
митационной модели , проведение экспериментов на этих моделях Обработка результатов экспериментов с целью выбора наилучшего варианта модернизации или реорганизации сети Проведение работы по модернизации и реорганизации сети Требования к специалисту на должность администратора сети Приведем некоторые примеры требований: Работодатель №1: Опыт построения и сопровождения программных/аппаратных ...
... максимизирующий выделенный критерий на множестве исходов, оценки которых по остальным критериям не ниже назначенных. Всякие задачи принятия решения является: Альтернативы (варианты, планы, допустимые альтернативы) Исходы (Результаты) Оптимальные решения (Наилучшие решения) Математическая модель ЗПР включает в себя формальное описание этих компонентов. X - множество допустимых альтернатив A ...
... условиях определенности математическое программирование дает точное решение поставленной задачи. Поэтому необходимости выбирать из нескольких вариантов попросту нет. Таким образом, в условиях определенности "Теория принятия решений" не используется, такими задачами занимается математическое программирование. 2) ЛПР знает вероятность реакции окружающей среды на выбор им той или иной альтернативы. ...
... , среднее распределение процентных отношений, дисперсия, стандартные отклонения, коэффициенты вариации Коэффициенты – j, c2, Чупрова, Спирмена, коэффициент корреляции Пирсона 2. Теория принятия решений Выбор любого управленческого решения всегда ограничен. Это объясняется необходимостью следовать определённым нормам поведения, которые и ориентируют руководителя. В зависимости от ...
0 комментариев