3. Аффинно-эквивалентные игры.
Существенные и несущественные игры тоже делятся на классы.
Кооперативная игра с множеством игроков I и характеристической функцией v называется аффинно-эквивалентной игре с тем же множеством игроков и характеристической функцией v’, если найдутся такое положительное число k и произвольные вещественные ci ( i Î I ), что для любой коалиции KÌ L имеет место равенство:
v’(K) = k v(K) + å ci , iÎK.
При афинной эквивалентности v ~ v’ дележ x соответствует дележу х’ так, что: xi ’ = k xi + ci.
Иногда вместо аффинной эквивалентности самих кооперативных игр удобно говорить об аффинной эквивалентности их характеристических функций.
Введенное понятие эквивалентности кооперативных игр сходно с понятием стратегической эквивалентности бескоалиционных игр, но и имеет существенные отличия. Во-первых, в кооперативных играх не оговариваются стратегии для эквивалентных игр. Во-вторых, если в бескоалиционных играх в качестве функции выигрыша рассматривались платежи, то в кооперативных играх задаются характеристические функции, то есть максимально гарантированные выигрыши коалиции.
Выделенные пары аффинно-эквивалентных игр на всем множестве кооперативных игр образуют бинарные отношения, которые обладают свойствами рефлексивности, симметричности и транзитивности, что позволяет судить о них как о классах эквивалентности. Следовательно, для изучения свойств какой-либо кооперативной игры достаточно рассмотреть одну, наиболее простую из соответствующего класса.
Рассмотрим с позиций стратегической эквивалентности несущественные игры.
Нулевой называется характеристическая функция, тождественно равная нулю. Кооперативная игра с множеством игроков I называется нулевой, если все значения ее характеристической функции равны нулю.
Теорема. Всякая существенная игра аффинно эквивалентна нулевой игре.
Следствие. Все несущественные игры с одним и тем же множеством игроков аффинно эквивалентны друг другу.
Таким образом, свойства любой несущественной игры можно изучать по эквивалентной ей нулевой игре. В нулевой игре все игроки безразличны к ее исходам, это случай полной незаинтересованности.
Для изучения существенных игр наиболее удобна a-b редуцированная форма, то есть такая, в которой v(i) = a, v(I) = b. Обычно используются варианты a=0, b=1 и a=1, b=0.
Теорема. Всякая существенная игра аффинно эквивалентна одно и только одной игре в 0-1 редуцированной форме.
То есть любую существенную кооперативную игру можно свести к редуцированной форме и в этом виде производить ее исследование и изучение. От существенной кооперативной игры к ее редуцированной форме можно перейти следующим образом. Для произвольной коалиции К:
v’(K) = ( v(K) - å iÎK v(i))/ ( v(I) - å iÎI v(i)) (3.1.)
Нетрудно видеть, что 0-1 редуцированная форма существенной кооперативной игры позволяет по характеристической функции сразу же судить об эффективности обьединения в коалицию (см.знаменатель), то есть в чистом виде рассматривать свойство супераддитивности.
Все дележи в 0-1 редуцированной форме должны отвечать условиям: xi ³0, так как v(i) = 0, но есть еще D, так как игра существенная å xi = v(I) = 1.
Пример. Дана кооперативная игра, I = {1,2,3,4}. Задана характеристическая функция: v(1) = -1; v(2) = v(3) = -2; v(1,2,4) = v(1,3,4) = 2; v(2,3,4) =1;
v(4)= v(1,2)= v(1,3) = v(1,4) = v(2,3)= v(2,4) = v(3,4) = v(1,2,3) = v(1,2,3,4) = 0;
Найти характеристическую функцию 0-1 редуцированной формы.
Воспользуемся формулой 3.1. В знаменателе выражения стоит постоянная величина v(I) - å iÎI v(i) = 0 - (-1-2-2) = 5. Остальные вычисления занесем в таблицу:
К | 1 | 2 | 3 | 4 | 12 | 13 | 14 | 23 | 24 | 34 | 123 | 124 | 134 | 234 | 1234 |
v’ | 0 | 0 | 0 | 0 | 0,6 | 0,6 | 0,2 | 0,8 | 0,4 | 0,4 | 1 | 1 | 1 | 1 | 1 |
митационной модели , проведение экспериментов на этих моделях Обработка результатов экспериментов с целью выбора наилучшего варианта модернизации или реорганизации сети Проведение работы по модернизации и реорганизации сети Требования к специалисту на должность администратора сети Приведем некоторые примеры требований: Работодатель №1: Опыт построения и сопровождения программных/аппаратных ...
... максимизирующий выделенный критерий на множестве исходов, оценки которых по остальным критериям не ниже назначенных. Всякие задачи принятия решения является: Альтернативы (варианты, планы, допустимые альтернативы) Исходы (Результаты) Оптимальные решения (Наилучшие решения) Математическая модель ЗПР включает в себя формальное описание этих компонентов. X - множество допустимых альтернатив A ...
... условиях определенности математическое программирование дает точное решение поставленной задачи. Поэтому необходимости выбирать из нескольких вариантов попросту нет. Таким образом, в условиях определенности "Теория принятия решений" не используется, такими задачами занимается математическое программирование. 2) ЛПР знает вероятность реакции окружающей среды на выбор им той или иной альтернативы. ...
... , среднее распределение процентных отношений, дисперсия, стандартные отклонения, коэффициенты вариации Коэффициенты – j, c2, Чупрова, Спирмена, коэффициент корреляции Пирсона 2. Теория принятия решений Выбор любого управленческого решения всегда ограничен. Это объясняется необходимостью следовать определённым нормам поведения, которые и ориентируют руководителя. В зависимости от ...
0 комментариев