1. Из формулы ... видно, что увеличение давления пропор-
ционально скорости течения ..., поэтому в трубопроводах не следует
допускать больших скоростей без принятия соответствующих предохранительных мер.
2. Причиной гидравлического удара является быстрое закрытие крана. При продолжительности закрытия .......... повышение давления равно ... (так называемый прямой гидравлический удар). При продолжительности ......... повышение давления меньше ...... (непрямой гидравлический удар).
Продолжительность закрытия ... (в секундах) может быть подсчитана по формуле Н.Е.Жуковского
..... или ...................,
где ... - плотность жидкости, ... - скорость течения, ... - длина трубопровода, ... - допустимое повышение напора столба жидкости (в метрах).
Время закрытия трубопровода ... прямо пропорционально длине трубопровода ... . Т.е. чем длинее трубопровод, тем длительнее должно быть закрытие кранов и задвижек.
3. Для уменьшения вредного действия давления при гидравлическом ударе ставят предохранительные клапаны, которые, открываясь при определённом давлении, предохраняют провод от разрушения.
4. Кроме предохранительных клапанов, для уменьшения давления применяют воздушные колпаки. В момент повышения давления жидкость входит в колпак и сжимает находящийся в нём воздух, что уменьшает повышение давления.
Пример. Определить продолжительность закрытия задвижки на трубопроводе, если длина трубопровода ... = 800 м, ... = 3 ..., допускаемое давление в трубопроводе 1 000 000 ..., а гидростатическое давление Р = 200 000 ... .
Решение.
Допускаемое повышение давление от гидростатического удара
... = 1 000 000 - 200 000 = 800 000 ...
Продолжительность закрытия задвижки
...
2. Вытекание жидкости при переменном уровне
Рассмотрим случай истечения жидкости из открытого сосуда в атмосферу через отверстие площадью ... .
Струя при вытекании через отверстие постепенно сжимается. Ближайшее к отверстию наименьшее живое сечение С-С, в котором движение можно рассматривать плавно изменяющимся, называется сжатым сечением. Обозначим площадь сжатого сечения С-С ...
...
...
Отношение
...
( ... = 0.64 для круглого отверстия)
называется коэффициентом сжатия.
Обозначим через ... высоту уровня жидкости над центром тяжести отверстия, ... - скорость в сжатом сечении.
Запишем уравнение Бернулли для сечений О-О и сжатого сечения С-С.
...
где ... - скорость свободной поверхности,
... - потери напора при вытекании через отверстие, они
определяются из соотношения
...
Пренебрегая величиной ... (ввиду её малости по сравнению с Н), получаем
...
отсюда скорость истечения
...
где ... - коэффициент скорости (.....0.97).
Для определения расхода надо скорость умножить на площадь сжатого сечения:
...
по формуле ... , откуда
...
тогда расход, выраженный через ... равен
...
где ... - коэффициент расхода (... = 0.62).
Рассмотрим вытекание жидкости из ёмкости при переменном уровне. Движение в данном случае является неустановившимся. С достаточной для практики точностью можно считать, что в каждый момент времени скорость вытекания определяется соответствующим этому моменту напором Н так же, как и при установившемся движении.
...
...
Определим время, в течение которого жидкость опустится на ...-...
Рассмотрим промежуточное положение уровня с напором Н. За время ... вытечет объём жидкости, равный
...
За это время ... напор изменится на (-...Н). Объём жидкости, вытекшей из сосуда, равен
...
где ... - площадь свободной поверхности в сосуде.
Приравнивая выражения, получаем
...
откуда
...
Интегрируя, находим
...
При постоянной площади свободной поверхности
...
Пример. Вычислить продолжительность опорожнения цистерны при её диаметре ... = 2 м и длине ... = 5 м, если диаметр сливного отверстия ... = 0.1 м, а коэффициент расхода ... = 0.62.
Решение. Продолжительность опорожнения
...
...
... - переменная по высоте горизонтальная площадь сечения цистерны, причём
...
Имеем
...
Тема 10
Кинематика плоских движений жидкости
1. Сетка течения плоского потока несжимаемой жидкости.
Функция тока.
2. Примеры плоских течений.
1. Однородный равномерный поток.
2. Источник и сток.
3. Вихрь.
4. Вихреисточник.
5. Диполь.
3. Бесциркуляционное обтекание цилиндра.
1. Сетка течения плоского потока несжимаемой жидкости.
Функция тока
В гидродинамике невязкой жидкости особенно полно разработана теория плоских стационарных (установившихся) течений.
Пусть, например, плоский безграничный поток обтекает цилиндрическое (или призматическое) тело, бесконечное в направлении, перпендикулярном к скорости течения. Характер течения (обтекания) тела будет одинаков во всех плоскостях, перпендикулярных к образующим тела.
Следовательно, для исследования кинематики и динамики такого потока достаточно рассмотреть плоскую задачу "обтекаемого" тела. В этом случае скорости и давления зависят только от двух координат, пусть, например, X и Y, также функциями этих двух координат являются проекции ... и ... скорости течения.
Пусть определена функция ... , которая удовлет-
воряет следующим условиям
...
Такая функция называется в гидромеханике функцией тока.
Уравнение линий тока в случае плоского течения имеет вид:
...
или
...
Подставляя сюда выражения проекций скорости через частные производные функции ..., найдём
...
При установившемся течении левая часть этого выражения представляет собой полный дифференциал функции ..., напишем
...
Отсюда следует, что ... , таким образом, функция
тока на линии тока сохраняет постоянное значение.
Предположим, что рассматриваемый плоский поток является потенциальным, т.е. что во всех точках потока имеет место условие
...
В соответствии с принятыми предположениями в этом случае
...
где ... - потенциал скорости.
Из условия ... имеем
...
Подставляя сюда выражение для функции тока, получим
...
Поскольку мы рассматриваем несжимаемую жидкость, то уравнение неразрывности принимает вид
...
или через потенциал скорости
...
Дифференциальные уравнения второго порядка, выражающее, что сумма вторых частных производных скалярной функции равняется нулю, являются, как известно, уравнениями Лапласа.
Таким образом, потенциал скорости и функция тока удовлетворяют уравнению Лапласа.
Это уравнение обладает следующим свойством. Если имеются функции, например, ..., ..., ... или ..., ..., ... такие, что каждая из них в отдельности удовлетворяет уравнению Лапласа, то ему будут удовлетворять также их линейные комбинации
...
...
где ..., ..., ..., ..., ... - постоянные.
Отсюда следует, что при наложении одного плоского потенциального потока на другой потенциальный поток полученное движение будет также потенциальным и его потенциал скорости и функция тока будут определяться путём суммирования значений потенциалов и функций тока слагаемых потоков.
Если построить два семейства кривых: кривые ... = К,
представляющие собой эквипотенциальные линии (т.е. линии равного
потенциала) и кривые ... = ... линии тока (здесь К и ... -
параметры), то эти семейства кривых образуют ортогональную сетку
плоского течения.
...
...
Это можно показать следующим образом. Вектор скорости ..., совпадающий с направлением касательной к линии тока, образует с осью абсцисс угол ..., тангенс которого с учётом выражения для скоростей равен
...
Из уравнения же эквипотенциальной линии следует
...
и отсюда тангенс угла ..., который образует касательная к эквипотенциальной линии с осью абсцисс, равен
...
Показать, что векторы ... взаимно перпендикулярны,
можно так
...
...
В результате перемножения получаем
...
Этому условию отвечают условные коэффициенты взаимно перпендикулярных линий.
Функция тока ... имеет физический смысл. Определим расход жидкости через сечение потока между двумя линиями тока ... и ... (т.е. расход струйки тока, ограниченной поверхностями, для которых названные линии тока являются образующими), размер сечения струйки по нормали к плоскости ... будем предполагать равным единице.
...
где ... - элемент живого сечения струйки, ... - ...,
... - единичный вектор по нормали к элементу ... ,
... и ... - границы сечения.
Обозначим через ... угол, образуемый вектором ... с осью ..., тогда ... и ... будут проекциями этого вектора на оси координат и, следовательно,
...
но ...
поэтому
...
...
Таким образом, разность значений функции тока на двух какихнибудь линиях тока равна секундному объёмному расходу сквозь сечение струйки тока, ограниченной соответствующими поверхностями тока.
Из сопоставления
...
следует
...
Из теории функций комплексного переменного следует, что если выполняются условия Коши-Римана, то линейная комбинация
...
функций ... и ... является функцией комплексного переменного ... , т.е.
...
Функция ... называется комплексным потенциалом, последний удовлетворяет уравнению Лапласа.
Найдём производную от комплексного потенциала
...
причём
...
...
где ... и ... - бесконечно малые величины высшего порядка. В пределе
...
Из этого выражения с учётом условий Коши-Римана следует
...
- это выражение называется комплексной скоростью.
Модуль комплексной скорости даёт величину скорости
...
Вводим комплексную скорость
...
сопряжённую скорость
...
Тогда
...
...
...
...
Рассмотрим
...
Тогда
... - циркуляция
... - расход.
2. Примеры плоских течений
1. Однородный равномерный поток.
Рассмотрим плоское прямолинейное и равномерное установившееся течение несжимаемой жидкости с одинаковой скоростью во всём потоке скоростью ... , параллельной оси ... . В этом случае
...
Отсюда
...
Линии равных потенциалов ... представляют собой пря-
мые, параллельные оси ординат.
Можно положить ... = 0 и ... = 0, тогда
...
Функцию тока найдём из условия
...
Сетка такого плоского течения изображается семейством ортогональных прямых, параллельных осям координат, а комплексный потенциал равен
...
Для прямолинейного течения сжимаемой невязкой жидкости со скоростью ..., наклонённой к оси абсцисс под углом ..., будем иметь
...
откуда
...
и
...
Комплексный потенциал такого течения будет иметь вид
...
...
... свойства. А.у.т. - тело, для которого силы однозначно определяют деформации и наоборот. Правильность выбранной абстракции подтверждается совпадением, определенной точностью результатов теории и опыта. Физика - наука, устанавливающая закономерные связи посредством наблюдений явлений в природе и посредством лабораторных опытов. Согласие результатов научного анализа с результатами опыта - критерий ...
... так, как большинство материалов относится к устному творчеству, откуда и были получены, также есть выдержки из книг: «Физики шутят», «Физики продолжают шутить», «Сборник задач по физике» Г. Остера. Шутки, которые шутят физики. Один математик спросил коллегу, известного своими религиозными убеждениями: - Вы, что же, верите в единого ...
... фара́да). 1 фарад равен электрической ёмкости конденсатора, при которой заряд 1 кулон создаёт между обкладками конденсатора напряжение 1 вольт. Ф = Кл/В = A·c/B Единица названа в честь английского физика Майкла Фарадея Фарад — очень большая ёмкость. Емкостью 1Ф обладал бы уединенный шар, радиус которого был бы равен 13 радиусам Солнца. Для сравнения, ёмкость Земли (шара размером с ...
... гальванометра отклонялась (то же происходило и при поднятии электромагнита из катушки). Эта схема напоминает рисунок из лабораторного журнала Фарадея. Удивительно, как схожи оказались эксперименты двух великих физиков, работавших независимо друг от друга на разных континентах! В своей статье, написанной уже после знакомства с опытом Фарадея, Генри, отдавая должное английскому физику, подчеркнул, ...
0 комментариев