2. Измерение скорости.
Для измерения кинетической энергии используется трубка полного давления, которая устанавливается в точке измерения открытым концом против потока жидкости.
Струйка жидкости, подтекающая к открытому концу трубки, полностью замораживается (...=0) и весь скоростной напор превращается в давление, которое в сумме со статическим достигает давления торможения ... в данной точке, которое называется полным
...
откуда
...
Таким образом измерение скорости жидкости или "несжимаемого" газа (...) основано на сопоставлении давления торможения с давлением в невозмущенном потоке. Последнее еще называется статистическим давлением ... Приемником давления служит Г-образная трубка, или трубка Пито. Давление обычно измеряют с помощью ...-образной трубки, куда залита жидкость манометрическая (спирт, вода, ртуть).
Приемное отверстие статического давления должно находится не слишком далеко от входа в трубку Пито, чтобы не случилось рассеивание механической энергии за счет вязкости, и не слишком близко, чтобы присутствие трубки Пито не искажало статическое давление.
3. Кавитация.
Hа практике оказывается, что в жидкости давление, равное нулю, недостижимо. Если давление ..., снижаясь, достигает давления паров этой жидкости, насыщающих пространство при данной температуре ..., то начинается процесс образования пузырьков пара (кипение), и неразрывность течения капельной жидкости нарушится.
...
...
Далее смесь капельной жидкости и пузырьков пара попадает в расширяющийся канал, давление возрастает и пузырьки пара начинают конденсироваться.
Кавитацией называется совокупность процессов образования пузырьков пара и их конденсация.
Кавитация может возникать не только в трубопроводах, но и при внешнем обтекании тел в областях, где возрастают местные скорости и уменьшается давление. Кавитации подвержены быстроходные колеса насосов и турбин, гребные винты.
Конденсация пузырьков пара происходит на твердых поверхностях очень быстро и завершается гидравлическим ударом, при котором развивается местное ударное давление на твердых поверхностях, достигающее сотен и даже тысяч атмосфер. Поэтому кавитация сопровождается тряской, шумом, снижением КПД насосов и турбин, эрозией твердых поверхностей, а иногда и выходом из строя агрегатов.
Обычно работа гидравлических систем в условиях кавитации не достигаются. Для предотвращения кавитации минимальное давление жидкости в системе должно быть больше давления паров, насыщающих пространство.
Одним из способов предотвращения кавитации является снижение температуры жидкости. Это приводит к снижению давления паров, насыщающих пространство.
Hапример, вода при 373 К кипит при давлении ... Па, а при
193 К - ... Па. При кавитации многокомпонентных жидкостей
(керосин, бензин и т.д.) вначале вскипают легкие фракции, а затем
тяжелые. Конденсация происходит в обратном порядке.
Для оценки возможности возникновения кавитации используется безразмерный критерий - число кавитации
...
Значение, числа кавитации при котором она возникает, называется критическим ... .
Явление используется в кавитационных регуляторах расхода.
4. Формула Торичелли
Применим интеграл Бернулли для определения скорости истечения несжимаемой тяжелой жидкости из большого открытого сосуда через малое отверстие.
Здесь ... - площадь свободной поверхности, ... - площадь отверстия, ... и ... - скорости на поверхности и в отверстии.
Уравнение неразрывности принимает вид
...
Считая движение жидкости установившимся и безвихревым применим интеграл Бернулли
...
Откуда
...
Из уравнения неразрывности
... или ...
Если отношение ... мало, то пренебрегая членом ..., получаем для скорости истечения приближенную формулу Торичелли.
Пример.Определить форму сосуда вращения, употребляемого для водяных часов.
...
Используя уравнение Бернулли можно объяснить принцип действия
1) работы струйного насоса, в котором высоконапорный поток . .. используется для подачи жидкости ... из резервуара.
2) принцип наддува топливного самолетного бака для предотвращения кавитации в топливной системе при полетах на большой высоте.
...
3) причину повышения подъемной силы крыла при заданной картине линий тока
...
Уменьшение давления в точках, где скорость потока больше, положено в основу водоструйного насоса. Струя воды подается в трубку, открывающуюся в атмосферу, так что на выходе их трубки давление равно атмосферному. В трубке имеется сужение, по которому вода идет с большой скоростью, вследствие чего давление в этом месте оказывается меньше атмосферного. Такое же давление устанавливается и в охватывающей трубку камере насоса, которая сообщается с трубкой через разрыв, имеющийся в узкой части трубки. Подсоединив к камере насоса откачиваемый объект, из него можно откачать воздух (или какой-либо другой газ) до давления порядка 100 мм рт. ст. Откачиваемый воздух захватывается струей воды и уносится в атмосферу.
...
Тема 8
Потери напора
1. Классификация потерь напора. Задачи гидродинамического расчета.
2. Потери напора по длине.
2.1. Основное уравнение равномерного движения.
2.2. Два режима течения жидкости.
2.3. Профиль скорости при ламинарном и турбулентном режимах течения.
2.4. Критерии режима течения жидкости.
2.5. Определение потерь напора на трение.
3. Местные гидравлические сопротивления. Формула Вейсбаха.
3.1. Внезапное расширение трубопровода.
4. Гидравлический расчёт напорных трубопроводов.
4.1. Классификация трубопроводов. Задачи гидравлического расчёта трубопроводов.
4.2. Расчёт коротких трубопроводов.
4.3. Расчёт длинных трубопроводов при последовательном соединении труб.
4.4. Расчёт трубопровода при параллельном соединении труб.
1. Классификация потерь напора и задач гидродинамического расчёта
Потери напора делятся на два вида: потери по длине и местные потери.
Потерями напора по длине называются потери удельной энергии потока на преодоление сопротивления движения напора на участке рассматриваемой длины без учёта влияния местных сопротивлений.
Местными потерями напора называют потери удельной энергии потока на преодоление сопротивлений движению потока, вызванных каким-либо местным препятствием (расширение, сужение потока, задвижка, шейка, клапан, колено и т.д.).
Потери напора обозначаются буквой ... с индексом, определяющим их вид.
Задачи гидродинамического расчёта:
1. Определение потерь напора.
2. Определение расхода.
2. Потери напора по длине
2.1. Основное уравнение равномерного движения
Рассмотрим прямолинейное равномерное движение жидкости. Живые сечения в этом случае могут быть произвольной формы, но не должны изменяться по всей длине рассматриваемого участка. В таком потоке потери напора определяются лишь потерями по длине.
Выделим из потока участок жидкости длиной ... и запишем уравнение Бернулли для сечений 1 и 2
...
... - ординаты центра тяжести сечений 1,2
... - давление в центрах тяжести этих сечений
... - средние скорости в этих сечениях
... - потери напора по длине.
Так как давление равномерное, то ... и уравнение можно переписать так:
...
в случае равномерного движения разность удельных потенциальных
энергий равна потере напора по длине.
Для вычисления этой разности напишем сумму проекций на ось А-А всех сил, действующих на участке 1-2. Эти силы следующие:
1) сила тяжести жидкости
...
2) силы давления на плоские сечения
...
3) сила трения
...
где ... - сила трения на единицу площади смачиваемой поверхности
русла,
... - смоченный периметр,
4) силы давления стенок русла на жидкость,эти силы не подсчитываем, так как они параллельны оси А-А и, следовательно, их проекции на ось А-А равны нулю.
Спроектируем все эти силы на ось А-А:
...
Из рисунка
...
Подставим выражение для сил в уравнение
...
Разделим обе части этого равенства на ..., имеем
...
Сравнивая выражения (1) и (2) , находим
...
откуда
...
Отношение площади живого сечения ... к смоченному периметру ... называется гидравлическим радиусом
...
Величина ... обозначается через ...
Получаем
...
Это уравнение называется основным уравнением равномерного движения.
Величина ... имеет размерность квадрата скорости
...
Выражение ... - называется динамической скоростью, обозначается ...
...
... свойства. А.у.т. - тело, для которого силы однозначно определяют деформации и наоборот. Правильность выбранной абстракции подтверждается совпадением, определенной точностью результатов теории и опыта. Физика - наука, устанавливающая закономерные связи посредством наблюдений явлений в природе и посредством лабораторных опытов. Согласие результатов научного анализа с результатами опыта - критерий ...
... так, как большинство материалов относится к устному творчеству, откуда и были получены, также есть выдержки из книг: «Физики шутят», «Физики продолжают шутить», «Сборник задач по физике» Г. Остера. Шутки, которые шутят физики. Один математик спросил коллегу, известного своими религиозными убеждениями: - Вы, что же, верите в единого ...
... фара́да). 1 фарад равен электрической ёмкости конденсатора, при которой заряд 1 кулон создаёт между обкладками конденсатора напряжение 1 вольт. Ф = Кл/В = A·c/B Единица названа в честь английского физика Майкла Фарадея Фарад — очень большая ёмкость. Емкостью 1Ф обладал бы уединенный шар, радиус которого был бы равен 13 радиусам Солнца. Для сравнения, ёмкость Земли (шара размером с ...
... гальванометра отклонялась (то же происходило и при поднятии электромагнита из катушки). Эта схема напоминает рисунок из лабораторного журнала Фарадея. Удивительно, как схожи оказались эксперименты двух великих физиков, работавших независимо друг от друга на разных континентах! В своей статье, написанной уже после знакомства с опытом Фарадея, Генри, отдавая должное английскому физику, подчеркнул, ...
0 комментариев