1. Два подхода к описанию движения сплошной среды.

Переменные Эйлера и Лагранжа

Для описания движения сплошной среды возможны два подхода. Один из них называется лагранжевым, другой - эйлеровым.

Лагранжев метод описания движения относится к типу отсчётных. В некоторый (начальный) момент времени ... каждая из жидких частиц маркируется путём присвоения ей значения координат в данный момент времени.

В трёхмерном пространстве введём обозначения

...

В дальнейшем прослеживается движение каждой частицы индивиду­ально. При таком подходе положение частицы в каждый момент времени

... будет зависеть от параметров а,б,с и ..., которые назы-

ваются переменными Лагранжа. Можно записать, что вектор положения

жидкой частицы равен

...

Скорость жидкой частицы выразится через производную ради­ус-вектора

...

а ускорение через производную скорости

...

В последних двух формулах при дифференцировании параметры а,б,с являются постоянными, ... и ... являются только функционала­ми времени и в этом случае энергии дифференцирования ... и ... тождественны.

Эйлеров метод описания движения относится к типу простран­ственных. В каждой точке пространства с координатами ... изучаются параметры движения в различные моменты времени ... . Таким образом, скорость жидкости в различных точках пространства должна быть функцией четырёх переменных ... , называемых переменными Эйлера,

...

а её дифференциал

...

В движущейся среде приращения ... не ...

независимыми, а соответственно равны

...

Поэтому справедливо равенство

...

где

...

Это означает, что полное ускорение ... индивидуальной жид­кой частицы, находящейся в момент времени ... в точке пространства

с координатами ... , состоит из двух частей: локального ускоре-

ния ... , обусловленного изменением скорости во времени в данной

точке, и конвективного ускорения ... , обусловленного неоднород­ностью поля скоростей в окрестности данной точки и связанного с этим обстоятельством конвективного переноса.

Производная ... носит название индивидуальной или субстан­циональной производной.

Если ... , поле скоростей стационарно, однако это ещё

не означает, что в жидкости отсутствуют ускорения. Стационарность

или нестационарность поля скоростей зависит от выбора системы ко­ординат.

Если ... = 0, поле скоростей однородно.

2. Траектория. Линия (поверхность) тока

Траекторией жидкой частицы называется геометрическое место точек пространства, через которое частица последовательно проходит во времени.

В переменных Лагранжа траекторию определяет уравнение

...

Если задача решена в переменных Эйлера, то известно поле ско­ростей ... и траекторию следует находить путём решения дифференциального уравнения

...

с начальным условием: при ... .

Линией тока называется линия, в каждой точке которой в каждый момент времени скорость направлена по касательной к этой линии.

В векторной форме условие тангенциальности можно записать в виде

...

В проекциях на оси координат получим систему уравнений

...

которую можно переписать также в виде

...

Время здесь является фиксированным параметром.

В стационарном случае траектория и линия тока совпадают. В нестационарных течениях траектории отличаются от линий тока.

Поверхность тока определяется как поверхность, в каждой точке которой в фиксированный момент времени вектор скорости лежит в ка­сательной плоскости. Такую поверхность можно образовать, например, путём проведения через замкнутую кривую непрерывной совокупности линий тока. В этом случае говорят о трубке тока.

2. Кинематика вихрей

Рассмотрим вектор вихря скорости, который определяется соот­ношением

...

называемый иногда вектором завихренности.

Линии в потоке жидкости, в каждой точке которой вектор вихря скорости является касательным к данной линии, называются вихревыми линиями.

...

...

Обобщение данного понятия на поверхность (вектор вихря в каж­дой точке поверхности должен лежать в касательной плоскости) даёт понятие вихревой поверхности или вихревого слоя.

Совокупность вихревых линий,проведенных через замкнутый кон­тур, образует вихревую поверхность, а жидкость, заключённая внутри вихревой поверхности, - вихревую трубку.

Интенсивность вихревой трубки удобнее выразить через циркуля­цию вектора скорости Г.

В общем случае Г определяется как

...

где ... - вектор перемещения вдоль произвольного контура, со­единяющего точки А и Б.

Если контур замкнут, то

...


Тема 4

Система уравнений гидростатики.

Динамика течений невязкой (идеальной) жидкости

1. Уравнение неразрывности.

2. Уравнение Эйлера.

3. Уравнение адиабатического движения жидкости.

4. Уравнения Эйлера в форме Громеки.

5. Гидростатика.

6. Уравнение Бернулли.

Система уравнений, описывающих течение жидкостей и газов, ос­новывается на фундаментальных законах сохранения. К ним относятся законы сохранения массы, количества движения, энергии.

Уравнения записываются в интегральной или дифференциальной форме в зависимости от типа решаемой задачи.

Рассмотрим систему уравнений, которая описывает динамику те­чений невязкой (идеальной ) жидкости.

Идеальной называется жидкость, у которой нет трения, т.е. жидкие элементы, могут свободно перемещаться в касательном направ­лении один относительно другого. В такой жидкости отсутствует теп­лообмен между различными её участками, а тангенциальные и нормаль­ные силы внутреннего трения не возникают.

В идеальной жидкости существуют силы только нормального да­вления, однозначно определяемые её плотностью и температурой. Иде­альная жидкость - абстракция, которой можно пользоваться на прак­тике, если скорости изменения деформации в жидкости малы. Посколь­ку касательные напряжения связаны с понятием вязкости, можно ут­верждать, что идеальная жидкость - это невязкая жидкость.

Движение идеальной жидкости будем рассматривать в поле сил, характеризуемых объёмной плотностью на единицу объёма жидкости.


Информация о работе «Лекции по физике»
Раздел: Физика
Количество знаков с пробелами: 118786
Количество таблиц: 4
Количество изображений: 0

Похожие работы

Скачать
27693
7
32

... свойства. А.у.т. - тело, для которого силы однозначно определяют деформации и наоборот. Правильность выбранной абстракции подтверждается совпадением, определенной точностью результатов теории и опыта. Физика - наука, устанавливающая закономерные связи посредством наблюдений явлений в природе и посредством лабораторных опытов. Согласие результатов научного анализа с результатами опыта - критерий ...

Скачать
25258
0
3

... так, как большинство материалов относится к устному творчеству, откуда и были получены, также есть выдержки из книг: «Физики шутят», «Физики продолжают шутить», «Сборник задач по физике» Г. Остера. Шутки, которые шутят физики. Один математик спросил коллегу, известного своими религиозными убеждениями: - Вы, что же, верите в единого ...

Скачать
27836
0
0

... фара́да). 1 фарад равен электрической ёмкости конденсатора, при которой заряд 1 кулон создаёт между обкладками конденсатора напряжение 1 вольт. Ф = Кл/В = A·c/B Единица названа в честь английского физика Майкла Фарадея Фарад — очень большая ёмкость. Емкостью 1Ф обладал бы уединенный шар, радиус которого был бы равен 13 радиусам Солнца. Для сравнения, ёмкость Земли (шара размером с ...

Скачать
23944
0
0

... гальванометра отклонялась (то же происходило и при поднятии электромагнита из катушки). Эта схема напоминает рисунок из лабораторного журнала Фарадея. Удивительно, как схожи оказались эксперименты двух великих физиков, работавших независимо друг от друга на разных континентах! В своей статье, написанной уже после знакомства с опытом Фарадея, Генри, отдавая должное английскому физику, подчеркнул, ...

0 комментариев


Наверх