3.3.2. Подбор подшипников для вала червячного колеса.

Для вала червячного колеса примем подшипники роликовые конические 7208 легкой серии. Схема установки подшипников – враспор. Из таблицы 19.24 [4] выписываем: d = 40 мм, D = 80 мм, Т = 19.25 мм, e = 0.38. Расстояние между заплечиками вала по компоновочной схеме lT= 80 мм. Тогда расстояние между широкими торцами наружных колец подшипников:

lП = lТ + 2Т = 80 + 2×19.25 = 118.25 (мм)


Смещение точки приложения радиальной реакции от торца подшипника:

Искомое расстояние l3 равно:

l6 = lП – 2а = 118.25 - 2×17.225 » 84 (мм)

Другие линейные размеры, необходимые для определения реакций, берем по компоновочной схеме: l1 = мм, l2 = 104 мм, d1 = 50 мм, l4 = мм, l5 = мм, d2 = 200 мм.

4.          КОНСТРУКТИВНЫЕ РАЗМЕРЫ ЧЕРВЯКА И ЧЕРВЯЧНОГО КОЛЕСА.

4.1. Размеры червяка.

Червяк выполняем за одно целое с валом. Размеры вала и червяка были определены ранее, поэтому только выпишем их для удобного дальнейшего использования:

-      диаметр делительной окружности d1 = 50 мм;

-      диаметр вершин da1 = 60 мм;

-      диаметр впадин df1  = 38 мм;

-      длина нарезанной части червяка b1 = 67 мм;

-      диаметр вала dбп1 = 30 мм.

4.2.       Расчет конструктивных размеров червячного колеса.

Все расчеты в данном пункте ведем в соответствии с методикой приведенной в [4] §6 главе 4.

Основные геометрические размеры червячного колеса были нами определены ранее. Для удобства дальнейшего использования выпишем их:

-      диаметр делительной окружности d2 = 200 мм;

-      диаметр вершин da2 = 210 мм;

-      диаметр впадин df2  = 188 мм;

-      ширина венца червячного колеса b2  = 45 мм;

-      диаметр отверстия под вал d  = 48 мм;

-      диаметр ступицы червячного колеса dст2 = 76 мм;

-      длина ступицы червячного колеса lст2 = 60 мм.

Колесо конструируем отдельно от вала. Изготовим червячное колесо составным (рис.4.1.): центр колеса из серого чугуна, зубчатый венец – из бронзы БрА9ЖЗЛ. Соединим зубчатый венец с центром посадкой с натягом. Так как у нас направление вращения постоянное, то на наружной поверхности центра сделаем буртик. Такая форма центра является традиционной. Однако наличие буртика усложнит изготовление и центра, и венца.

Червячное колесо вращается с небольшой скоростью, поэтому нерабочие поверхности обода, диска, ступицы колеса оставляем необработанными и делаем конусными с большими радиусами закруглений.

Острые кромки на торцах венца притупляем фасками f » 0.5m, где m – модуль зацепления.

f = 0.5×5 = 2.5 (мм)

В зависимости от диаметра отверстия червячного колеса принимаем стандартное значение фасок по таблице 4.1 из [4], то есть f = 1.6 мм

Рассчитаем основные конструктивные элементы колеса:

h » 0.15b2 = 0.15×45 = 7 (мм);

t = 0.8h = 0.8×7 = 5.6 (мм);

Sч = 2×m = 2×5 = 10 (мм);

Sо = 1.3×Sч = 1.3×10 = 13 (мм);

C = 1.25×So = 1.25×13 » 16 (мм).

5. РАСЧЕТ ЭЛЕМЕНТОВ КОРПУСА РЕДУКТОРА.

5.1. Конструирование корпуса.

Конструкцию корпуса червячного редуктора принимаем по рис.11.15 из [4]. Для червячного редуктора с межосевым расстоянием меньшим 160 мм рекомендуется неразъемный корпус с двумя окнами на боковых стенках, через которые при сборке вводят внутрь корпуса комплект вала с червячным колесом.


Боковые крышки корпуса центрируем по переходной посадке и крепим к корпусу болтами. Диаметры болтов принимаем по формуле:

где Т – вращающий момент на тихоходном валу, Н×м.

принимаем М8, число болтов z = 8.

Для удобства сборки диаметр D отверстия окна выполняем на величину 2С = 4 мм больше максимального диаметра колеса dам2 = 210 мм. Чтобы добиться необходимой жесткости, боковые крышки выполняем с высокими центрирующими буртиками (Н). Соединение крышек с корпусом уплотняем резиновыми кольцами круглого сечения.


Толщина стенки корпуса:

принимаем d = 8 мм.

Толщины стенок боковых крышек d1 = 0.9d = 0.9×8 » 7 (мм)

Диаметр отверстия под крышку D = dам2 + 2С = 210 + 4 = 214 (мм)

Размеры конструктивных элементов крышек: С = 2 мм, D = 214 мм,

Dк = D + (4…4.4)d = 214 + (4…4.4)×8 = 246…250 (мм),

примем Dк равным 248 мм;

Dф = Dк + 4 мм = 248 мм + 4 мм =252 мм;

Н ³ 0.1×Dк = 0.1×248 = 24.8 (мм).

Примем Н равным 30 мм.

Размер hp = 163 мм.

Диаметр dф болтов для крепления редуктора к плите:

dф = 1.25d = 1.25×8 = 10 (мм),

Принимаем М10, число болтов – 4.

Диаметр отверстия для болта d0 = 12 мм (по таблице 11.11 из [4]).

Толщина лапы – 15 мм.

Высота ниши h0 = 2.5(dф + d) = 2.5(10 + 8) = 45 (мм)

Глубина ниши – 24 мм.

Ширина опорной поверхности – 32 мм.


Информация о работе «Привод ленточного конвейера. Червячный редуктор.»
Раздел: Металлургия
Количество знаков с пробелами: 36159
Количество таблиц: 12
Количество изображений: 3

Похожие работы

Скачать
5998
2
2

... , рад/с 3.6 Определяем общее передаточное отношение Из рекомендаций [1, c. 7] принимаем передаточное отношение редуктора Uред = 8; цепной передачи передачи Uц = 3 ; ременной передачи Uр = 2,115.  Проверка выполнена 3.7 Определяем результаты кинематических расчетов на валах Вал А: Частота вращения вала об/мин Угловая скорость рад/с Мощность на валу кВт Крутящий момент Н м ...

Скачать
28651
6
5

... ω2 = π× n2/30 = 3,14×695,33/30 = 72,78 с-1; (13) ω3 = π × n 3/30 = 3,14× 17,38/30 = 1,82 с-1; (14) ω4 = ω3 = 1,82 с-1 (15) Определение мощностей, передаваемых валами привода р1 = р × η3 × η4 (16) где Р - номинальная мощность требуемого электродвигателя, р =1,7кВт; η3 - КПД подшипников качения, η3 =0,995 ...

Скачать
12868
2
7

... :   1.3 Определение частоты вращения вала исполнительного механизма и двигателя Частота n4, мин-1, вращения вала: гдеD - диаметр барабана ленточного конвейера, мм;   Рисунок 1 - Кинематическая схема привода ленточного конвейера: 1 - электродвигатель; 2 - ременная передача; 3 - двухступенчатый коническо-цилиндрический редуктор; 4 - компенсирующая муфта; 5 - узел барабана. ...

Скачать
8703
0
3

ной скорости V=0.18 м/с и диаметре барабана D=400 мм. Кинематический анализ схемы привода. Привод состоит из электродвигателя, одноступенчатого червячного редуктора и приводного барабана. Червячная передача служит для передачи мощности от первого (I) вала ко второму (II). При передаче мощности имеют место ее потери на преодоление сил вредного сопротивления. Такие сопротивления имеют место и в ...

0 комментариев


Наверх