1.3 Графы состояний СМО

При анализе случайных процессов с дискретными состояниями и непрерывным временем удобно пользоваться вариантом схематичного изображения возможных состояний СMO (рис. 6.2.1) в виде графа с разметкой его возможных фиксированных состояний. Состояния СМО изображаются обычно либо прямоугольниками, либо кружками, а возможные направления переходов из одного состояния в другое ориентированы стрелками, соединяющими эти состояния. Например, размеченный граф состояний одноканальной системы случайного процесса обслуживания в газетном киоске приведен на рис. 1.3.

λ

S0

 

S2

 

S1

 
01 λ

S0

 

S2

 

S1

 
12

 λ10 λ21

Рис. 1.3. Размеченный граф состояний СМО

Система может находиться в одном из трех состояний: S0 -канал свободен, простаивает, S1 — канал занят обслуживанием, S2- канал занят обслуживанием и одна заявка в очереди. Переход системы из состояния S0 в Sl происходит под воздействием простейшего потока заявок интенсивностью λ 01 а из состояния Sl в состояние S0 систему переводит поток обслуживания с интенсивностью λ 01. Граф состояний системы обслуживания с проставленными интенсивностями потоков у стрелок называется размеченным. Поскольку пребывание системы в том или ином состоянии носит вероятностный характер, то вероятность:pi(t) того, что система будет находиться в состоянии Si в момент времени t, называется вероятностью i-го состояния СМО и определяется числом поступивших заявок k на обслуживание.

Случайный процесс, происходящий в системе, заключается в том, что в случайные моменты времени t0, t1, t2,..., tk,..., tn система оказывается в том или другом заранее известном дискретном состоянии последовательно. Такая. случайная последовательность событий называется Марковской цепью, если для каждого шага вероятность перехода из одного состояния St в любое другое Sj не зависит от того, когда и как система перешла в состояние St. Описывается марковская цепь с помощью вероятности состояний, причем они образуют полную группу событий, поэтому их сумма равна единице. Если вероятность перехода не зависит от номера к, то марковская цепь называется однородной. Зная начальное состояние системы обслуживания, можно найти вероятности состояний для любого значения к-числа заявок поступивших на обслуживание.

1.4 Случайные процессы

Переход СМО из одного состояния в другое происходит случайным образом и представляет собой случайный процесс. Работа СМО — случайный процесс с дискретными состояниями, поскольку его возможные состояния во времени можно заранее перечислить. Причем переход из одного состояния в другое, происходит скачкообразно, в случайные моменты времени, по этому он называется процессом с непрерывным временем. Таким образом, работа СМО представляет собой случайный процесс с дискретными состояниями и непрерывным; временем. Например, в процессе обслуживания оптовых покупателей на фирме «Кристалл» в Москве можно фиксировать заранее все возможные состояния простейших. СМО, которые входят в весь цикл, коммерческого обслуживания от момента заключения договора на поставку ликероводочной продукции, ее оплаты, оформления документов, отпуска и получения продукции, догрузки и вывоза со склада готовой продукции.

Из множества разновидностей случайных процессов наибольшее распространение в коммерческой деятельности получили такие процессы, для которых в любой момент времени характеристики процесса в будущем зависят только от его состояния в настоящий момент и не зависят от предыстории — от прошлого. Например, возможность получения с завода «Кристалл» ликероводочной продукции зависит от наличия ее на складе готовой продукции, т.е. его состояния в данный момент, и не зависит от того, когда и как получали и увозили в прошлом эту продукцию другие покупатели.

Такие случайные процессы называются процессами без последствия, или марковскими, в которых при фиксированном настоящем будущее состояние СМО не зависит от прошлого. Случайный процесс, протекающий в системе, называется марковским случайным процессом, или «процессом без последствия», если он обладает следующим свойством: для каждого момента времени t0 вероятность любого состояния t > t0 системы Si, - в будущем (t >tQ) зависит только от ее состояния в настоящем (при t = t0) и не зависит от того, когда и каким образом система пришла в это состояние, т.е. оттого, как развивался процесс в прошлом.

Марковские случайные процессы делятся на два класса: процессы с дискретными и непрерывными состояниями. Процесс с дискретными состояниями возникает в сиcтемах, обладающих только некоторыми фиксированными состояниями, между которыми возможны скачкообразные переходы в некоторые, заранее не известные моменты времени. Рассмотрим пример процесса с дискретными состояниями. В офисе фирмы имеются два телефона. Возможны следующие состояния у этой системы обслуживания: So—телефоны свободны; Sl — один из телефонов занят; S2— оба телефона заняты.

Процесс, протекающий в этой системе, состоит в том, что система случайным образом переходит скачком из одного дискретного состояния в другое.

Процессы с непрерывными состояниями отличаются непрерывным плавным переходом из одного состояния в другое. Эти процессы более характерны для технических устройств, нежели для экономических объектов, где обычно лишь приближенно можно говорить о непрерывности процесса (например, непрерывном расходовании запаса товара), тогда как фактически всегда процесс имеет дискретный характер. Поэтому далее мы будем рассматривать только процессы с дискретными состояниями.

Марковские случайные процессы с дискретными состояниями в свою очередь подразделяются на процессы с дискретным временем и процессы с непрерывным временем. В первом случае переходы из одного состояния в другое происходят только в определенные, заранее фиксированные моменты времени, тогда как в промежутки между этими моментами система сохраняет свое состояние. Во втором случае переход системы из состояния в состояние может происходить в любой случайный момент времени.

На практике процессы с непрерывным временем встречаются значительно чаще, поскольку переходы системы из одного состояния в другое обычно происходят не в какие-то фиксированные моменты времени, а в любые случайные моменты времени.

Для описания процессов с непрерывным временем используется модель в виде так называемой марковской цепи с дискретными состояниями системы, или непрерывной марковской цепью.


Глава II. Уравнения описывающие системы массового обслуживания

 


Информация о работе «Моделирование систем массового обслуживания»
Раздел: Экономико-математическое моделирование
Количество знаков с пробелами: 93262
Количество таблиц: 21
Количество изображений: 4

Похожие работы

Скачать
48014
3
9

... как точки на временной оси. Для достижения основной цели моделирования достаточно наблюдать систему в моменты реализации основных событий. Рассмотрим пример одноканальной системы массового обслуживания. Целью имитационного моделирования подобной системы является определение оценок ее основных характеристик, таких, как среднее время пребывания заявки в очереди, средняя длина очереди и доля ...

Скачать
20467
0
10

... каналов обслуживан6ия, производительностью отдельного канала и эффективным обслуживанием с целью нахождения наилучших путей управления этими процессами. Задача теории массового обслуживания - установить зависимость результирующих показателей работы системы массового обслуживания (вероятности того, что заявка будет обслужена; математического ожидания числа обслуженных заявок и т.д.) от входных ...

Скачать
94801
7
6

... 6.  Петухов О.А. , Морозов А.В. , Петухова Е.О. Моделирование системное, имитационное, аналитическое. Учебное пособие – Санкт-Петербург 2008 7.  Норенков И.П., Федорук Е.В.Имитационное моделирование систем массового обслуживания. Методические указания – Москва 1999 8.  Кутузов О.И., Татарникова Т.М., Петров К.О. Распределенные информационные системы управления. Учебное пособие – Санкт-Петербург ...

Скачать
6624
2
3

... *0,1*25 – 1*,09 = 2148,2 ден.ед. Таким образом, максимальная прибыль достигается при установлении трех телефонных линий. Программа имитационного моделирования для оптимального режима работы примет вид: имитационный моделирование массовый обслуживание Результаты расчетов функциональных характеристик СМО: Характеристика Значение l 1/0,67 = 1,5 зв./мин. m 60/2=30 зв./мин. ...

0 комментариев


Наверх