2.2 Процессы «рождения – гибели»
Среди однородных марковских процессов существует класс случайных процессов, имеющих широкое применение при построении математических моделей в областях демографии, биологии, медицины (эпидемиологии), экономики, коммерческой деятельности. Это так называемые процессы «рождения - гибели», марковские процессы со стохастическими графами состояний следующего вида:
S1 |
S2 |
λ0 λ1 λ2 λ3 λn-1
S0 |
S3 |
kjlSn |
μ0 μ1 μ3 μ4 μn-1
Рис. 2.1 Размеченный граф процесса «рождения - гибели»
Этот граф воспроизводит известную биологическую интерпретацию: величина λk отображает интенсивность рождения нового представителя некоторой популяции, например, кроликов, причем текущий объем популяции равен k; величина μ является интенсивностью гибели (продажи) одного представителя этой популяции, если текущий объем популяции равен k. В частности, популяция может быть неограниченной (число n состояний марковского процесса является бесконечным, но счетным), интенсивность λ может быть равна нулю (популяция без возможности возрождения), например, при прекращении воспроизводства кроликов.
Для Марковского процесса «рождения - гибели», описанного стохастическим графом, приведенным на рис. 2.1, найдем финальное распределение. Пользуясь правилами составления уравнений для конечнего числа n предельных вероятностей состояния системы S1, S2, S3,… Sk,…, Sn, составим соответствующие уравнения для каждого состояния:
для состояния S0-λ0p0=μ0p1;
для состояния S1-(λ1+μ0)p1= λ0p0+μ1p2, которое с учетом предыдущего уравнения для состояния S0 можно преобразовать к виду λ1р1= μ1p2.
Аналогично можно составить уравнения для остальных состояний системы S2, S3,…, Sk,…, Sn. В результате получим следующую систему уравнений:
Решая эту систему уравнений, можно получить выражения, определяющие финальные состояния системы массового обслуживания:
Следует заметить, что в формулы определения финальных вероятностей состояний р1, р2, р3,…, рn, входят слагаемые, являющиеся составной частью суммы выражения, определяющей р0. В числителях этих слагаемых находятся произведения всех интенсивностей, стоящих у стрелок графа состояний, ведущих слева на право до рассматриваемого состояния Sk, а знаменатели представляют собой произведения всех интенсивностей, стоящих у стрелок, ведущих справа на лево до рассматриваемого состояния Sk, т.е. μ0, μ1, μ2, μ3,… μk. В связи с этим запишем эти модели в более компактном виде:
к=1,n
... как точки на временной оси. Для достижения основной цели моделирования достаточно наблюдать систему в моменты реализации основных событий. Рассмотрим пример одноканальной системы массового обслуживания. Целью имитационного моделирования подобной системы является определение оценок ее основных характеристик, таких, как среднее время пребывания заявки в очереди, средняя длина очереди и доля ...
... каналов обслуживан6ия, производительностью отдельного канала и эффективным обслуживанием с целью нахождения наилучших путей управления этими процессами. Задача теории массового обслуживания - установить зависимость результирующих показателей работы системы массового обслуживания (вероятности того, что заявка будет обслужена; математического ожидания числа обслуженных заявок и т.д.) от входных ...
... 6. Петухов О.А. , Морозов А.В. , Петухова Е.О. Моделирование системное, имитационное, аналитическое. Учебное пособие – Санкт-Петербург 2008 7. Норенков И.П., Федорук Е.В.Имитационное моделирование систем массового обслуживания. Методические указания – Москва 1999 8. Кутузов О.И., Татарникова Т.М., Петров К.О. Распределенные информационные системы управления. Учебное пособие – Санкт-Петербург ...
... *0,1*25 – 1*,09 = 2148,2 ден.ед. Таким образом, максимальная прибыль достигается при установлении трех телефонных линий. Программа имитационного моделирования для оптимального режима работы примет вид: имитационный моделирование массовый обслуживание Результаты расчетов функциональных характеристик СМО: Характеристика Значение l 1/0,67 = 1,5 зв./мин. m 60/2=30 зв./мин. ...
0 комментариев