3.4 Одноканальная СМО с ограниченной длиной очереди
В коммерческой деятельности чаще встречаются СМО с ожиданием (очередью).
Рассмотрим простую одноканальную СМО с ограниченной очередью, в которой число мест в очереди т - фиксированная величина. Следовательно, заявка, поступившая в тот момент, когда все места в очереди заняты, не принимается к обслуживанию, не встает в очередь и .покидает систему.
Граф этой СМО представлен на рис. 3.4 и совпадает с графом рис. 2.1 описывающим процесс «рождения—гибели», с тем отличием, что при наличии только одного канала.
|
|
|
|
|
μ μ μ μ ... μ
Рис. 3.4. Размеченный граф процесса «рождения - гибели» обслуживания все интенсивности потоков обслуживания равны
Состояния СМО можно представить следующим образом:
S0 - канал обслуживания свободен,
S, - канал обслуживания занят, но очереди нет,
S2 - канал обслуживания занят, в очереди стоит одна заявка,
S3 - канал обслуживания занят, в очереди стоят две заявки,
Sm+1 - канал обслуживания занят, в очереди все т мест заняты, любая следующая заявка получает отказ.
Для описания случайного процесса СМО можно воспользоваться изложенными ранее правилами и формулами. Напишем выражения, определяющие предельные вероятности состояний:
p1 = ρ * ρо
p2=ρ2 * ρ0
pk=ρk * ρ0
Pm+1 = pm=1 * ρ0
p0=[1+ρ+ρ2+ρ3+...+ρm+1]-1
Выражение для р0 можно в аанном случае записать проще, пользуясь тем, что в знаменателе стоит геометрическая прогрессия относительно р, тогда после соответствующих преобразований получаем:
ρ= (1- ρ )
(1- ρm+2)
Эта формула справедлива для всех р, отличных от 1, если же р = 1, то р0 = 1/(т + 2), а все остальные вероятности также равны 1/(т + 2). Если предположить т = 0, то мы переходим от рассмотрения одноканальной СМО с ожиданием к уже рассмотренной одноканальной СМО с отказами в обслуживании. Действительно, выражение для предельной вероятности р0 в случае т = 0 имеет вид:
pо = μ / (λ+μ)
И в случае λ = μ имеет величину р0 = 1 / 2.
Определим основные характеристики одноканальной СМО с ожиданием: относительную и абсолютную пропускную способность, вероятность отказа, а также среднюю длину очереди и среднее время ожидания заявки в очереди.
Заявка получает отказ, если она поступает в момент времени, когда СМО уже находится в состоянии Sm+1 и, следовательно, все места в очереди да заняты и один канал обслуживает Поэтому вероятность отказа определяется вероятностью появлением
Состояния Sm+1:
Pотк = pm+1 = ρm+1 * p0
Относительная пропускная способность, или доля обслуживаемых заявок, поступающих в единицу времени, определяется выражением
Q = 1- pотк = 1- ρm+1 * p0
абсолютная пропускная способность равна:
A = Q * λ
Среднее число заявок Lоч стоящих в очереди на обслуживание, определяется математическим ожиданием случайной величины к - числа заявок, стоящих в очереди
Lоч-= M(k).
случайная величина к принимает следующие только целочисленные значения:
1 - в очереди стоит одна заявка,
2 - в очереди две заявки,
т-в очереди все места заняты
Вероятности этих значений определяются соответствующими вероятностями состояний, начиная с состояния S2. Закон распределения дискретной случайной величины к изображается следующим образом:
k | 1 | 2 | m | |
pi | p2 | p3 | pm+1 |
Математическое ожидание этой случайной величины равно:
Lоч = 1* p2 +2* p3 +...+ m* pm+1
В общем случае при p ≠1 эту сумму можно преобразовать, пользуясь моделями геометрической прогрессии, к более удобному виду:
Lоч = p2 * 1- pm * (m-m*p+1) * p0
( 1- p )2
В частном случае при р = 1, когда все вероятности pk оказываются равными, можно воспользоваться выражением для суммы членов числового ряда
1+2+3+ m = m(m+1)
2
Тогда получим формулу
L’оч= m(m+1) * p0 = m(m+1) (p=1).
2 2(m+1)
Применяя аналогичные рассуждения и преобразования, можно показать, что среднее время ожидания обслуживания заявки а очереди определяется формулами Литтла
Точ = Lоч/А (при р ≠ 1) и Т1оч = L’оч /А(при р = 1).
Такой результат, когда оказывается, что Точ ~ 1/ λ, может показаться странным: с увеличением интенсивности потока заявок как будто бы должна возрастать длина очереди и уменьшается среднее время ожидания. Однако следует иметь в виду, что, во-первых, величина Lоч является функцией от λ и μ и, во-вторых, рассматриваемая СМО имеет ограниченную длину очереди не более m заявок.
Заявка, поступившая в СМО в момент времени, когда все каналы заняты, получает отказ, и, следовательно, время ее «ожидания» в СМО равно нулю. Это приводит в общем случае (при р ≠ 1) к уменьшению Точ ростом λ, поскольку доля таких заявок с ростом λ увеличивается.
Если отказаться от ограничения на длину очереди, т.е. устремить m —> →∞, то случаи р < 1 и р ≥1 начинают существенно различаться. Записанные выше формулы для вероятностей состояний преобразуются в случае р < 1 к виду
р0=1-р
р1 =р*(1-р)
p2=p2(1-p)
pk=рk*(1 - р)
При достаточно большом к вероятность pk стремится к нулю. Поэтому относительная пропускная способность будет Q = 1, а абсолютная пропускная способность станет равной А —λ Q — λ следовательно, обслуживаются все поступившие заявки, причем средняя длина очереди окажется равной:
Lоч = p2 1-p
а среднее время ожидания по формуле Литтла
Точ = Lоч/А
В пределе р << 1 получаем Точ = ρ / μ т.е. среднее время ожидания быстро уменьшается с увеличением интенсивности потока обслуживания. В противном случае при р ≥ 1 оказывается, что в СМО отсутствует установившийся режим. Обслуживание не успевает за потоком заявок, и очередь неограниченно растет со временем (при t → ∞). Предельные вероятности состояний поэтому не могут быть определены: при Q = 1 они равны нулю. Фактически СМО не выполняет своих функций, поскольку она не в состоянии обслужить все поступающие заявки. Нетрудно определить, что доля обслуживаемых заявок и абсолютная пропускная способность соответственно составляют в среднем ρ и μ, однако неограниченное увеличение очереди, а следовательно, и времени ожидания в ней приводит к тому, что через некоторое время заявки начинают накапливаться в очереди на неограниченно долгое время.
В качестве одной из характеристик СМО используют среднее время Тсмо пребывания заявки в СМО, включающее среднее время пребывания в очереди и среднее время обслуживания. Эта величина вычисляется по формулам Литтла: если длина очереди ограничена — среднее число заявок, находящихся в очереди, равно:
Lсмо= m+1 ;2
Тсмо= Lсмо; при p ≠1
A тогда среднее время пребывания заявки в системе массового обслуживания (как в очереди, так и под обслуживанием) равно:
Тсмо= m+1 при p ≠1 2μ
... как точки на временной оси. Для достижения основной цели моделирования достаточно наблюдать систему в моменты реализации основных событий. Рассмотрим пример одноканальной системы массового обслуживания. Целью имитационного моделирования подобной системы является определение оценок ее основных характеристик, таких, как среднее время пребывания заявки в очереди, средняя длина очереди и доля ...
... каналов обслуживан6ия, производительностью отдельного канала и эффективным обслуживанием с целью нахождения наилучших путей управления этими процессами. Задача теории массового обслуживания - установить зависимость результирующих показателей работы системы массового обслуживания (вероятности того, что заявка будет обслужена; математического ожидания числа обслуженных заявок и т.д.) от входных ...
... 6. Петухов О.А. , Морозов А.В. , Петухова Е.О. Моделирование системное, имитационное, аналитическое. Учебное пособие – Санкт-Петербург 2008 7. Норенков И.П., Федорук Е.В.Имитационное моделирование систем массового обслуживания. Методические указания – Москва 1999 8. Кутузов О.И., Татарникова Т.М., Петров К.О. Распределенные информационные системы управления. Учебное пособие – Санкт-Петербург ...
... *0,1*25 – 1*,09 = 2148,2 ден.ед. Таким образом, максимальная прибыль достигается при установлении трех телефонных линий. Программа имитационного моделирования для оптимального режима работы примет вид: имитационный моделирование массовый обслуживание Результаты расчетов функциональных характеристик СМО: Характеристика Значение l 1/0,67 = 1,5 зв./мин. m 60/2=30 зв./мин. ...
0 комментариев