3.2 Многоканальная СМО с отказами в обслуживании

В коммерческой деятельности примерами многоканальных СМО являются офисы коммерческих предприятий с несколькими телефонными каналами, бесплатная справочная служба по наличию в авто магазинах самых дешевых автомобилей в Москве имеет 7 телефонных номеров, а дозвониться и получить справку, как известно, очень трудно.

Следовательно, авто магазины теряют клиентов, возможность увеличить количество проданных автомобилей и выручку от продаж, товарооборот, прибыль.

Туристические фирмы по продаже путевок имеют два, три, четыре и более каналов, как, например, фирма Express-Line.

Рассмотрим многоканальную СМО с отказами в обслуживании на рис. 3.2, на вход которой поступает пуассоновский поток заявок с интенсивностью λ.


λ λ λ λ λ

S0

S1

Sk

Sn

μ 2μ kμ (k+1)μ nμ

Рис. 3.2. Размеченный граф состояний многоканальной СМО с отказами

Поток обслуживания в каждом канале имеет интенсивность μ. По числу заявок СМО определяются ее состояния Sk, представленные в виде размеченного графа:

S0 – все каналы свободны k=0,

S1 – занят только один канал, k=1,

S2 – заняты только два канала, k=2,

Sk – заняты k каналов,

Sn – заняты все n каналов, k= n.

Состояния многоканальной СМО меняются скачкообразно в случайные моменты времени. Переход из одного состояния, например S0 в S1, происходит под воздействием входного потока заявок с интенсивностью λ, а обратно – под воздействием потока обслуживания заявок с интенсивностью μ. Для перехода системы из состояния Skв Sk-1 безразлично, какой именно из каналов освободиться, поэтому поток событий, переводящий СМО, имеет интенсивность kμ, следовательно, поток событий, переводящий систему из Snв Sn-1, имеет интенсивность nμ. Так формулируется классическая задача Эрланга, названная по имени датского инженера – математика- основателя теории массового обслуживания.

Случайный процесс, протекающий в СМО, представляет собой частный случай процесса «рождения- гибели» и описывается системой дифференциальных уравнений Эрланга, которые позволяют получить выражения для предельных вероятностей состояния рассматриваемой системы, называемые формулами Эрланга:

  .

Вычислив все вероятности состояний n – канальной СМО с отказами р0 , р1, р2, …,рk,…, рn, можно найти характеристики системы обслуживания.

Вероятность отказа в обслуживании определяется вероятностью того, что поступившая заявка на обслуживание найдет все n каналов занятыми, система будет находиться в состоянии Sn:

 k=n.

В системах с отказами события отказа и обслуживания составляют полную группу событий, поэтому

Роткобс=1

На этом основании относительная пропускная способность опредляется по формуле

Q = Pобс= 1-Ротк=1-Рn

Абсолютную пропускную способность СМО можно определить по формуле

А=λ*Робс

Вероятность обслуживания, или доля обслуженных заявок, определяет относительную пропускную способность СМО, которая может быть определена и по другой формуле:

Из этого выражения можно определить среднее число заявок, находящихся под обслуживанием, или, что же самое, среднее число занятых обслуживанием каналов

Коэффициент занятости каналов обслуживанием определятся отношением среднего числа занятых каналов к их общему числу

Вероятность занятости каналов обслуживанием, которая учитывает среднее время занятости tзан и простоя tпр каналов, определяется следующим образом:

Из этого выражения можно определить среднее время простоя каналов

Среднее время пребывания заявки в системе в установившемся режиме определятся формулой Литтла

Тсмо= nз/λ.


Информация о работе «Моделирование систем массового обслуживания»
Раздел: Экономико-математическое моделирование
Количество знаков с пробелами: 93262
Количество таблиц: 21
Количество изображений: 4

Похожие работы

Скачать
48014
3
9

... как точки на временной оси. Для достижения основной цели моделирования достаточно наблюдать систему в моменты реализации основных событий. Рассмотрим пример одноканальной системы массового обслуживания. Целью имитационного моделирования подобной системы является определение оценок ее основных характеристик, таких, как среднее время пребывания заявки в очереди, средняя длина очереди и доля ...

Скачать
20467
0
10

... каналов обслуживан6ия, производительностью отдельного канала и эффективным обслуживанием с целью нахождения наилучших путей управления этими процессами. Задача теории массового обслуживания - установить зависимость результирующих показателей работы системы массового обслуживания (вероятности того, что заявка будет обслужена; математического ожидания числа обслуженных заявок и т.д.) от входных ...

Скачать
94801
7
6

... 6.  Петухов О.А. , Морозов А.В. , Петухова Е.О. Моделирование системное, имитационное, аналитическое. Учебное пособие – Санкт-Петербург 2008 7.  Норенков И.П., Федорук Е.В.Имитационное моделирование систем массового обслуживания. Методические указания – Москва 1999 8.  Кутузов О.И., Татарникова Т.М., Петров К.О. Распределенные информационные системы управления. Учебное пособие – Санкт-Петербург ...

Скачать
6624
2
3

... *0,1*25 – 1*,09 = 2148,2 ден.ед. Таким образом, максимальная прибыль достигается при установлении трех телефонных линий. Программа имитационного моделирования для оптимального режима работы примет вид: имитационный моделирование массовый обслуживание Результаты расчетов функциональных характеристик СМО: Характеристика Значение l 1/0,67 = 1,5 зв./мин. m 60/2=30 зв./мин. ...

0 комментариев


Наверх