7. разрешимая группа со сверхразрешимыми подгруппами непримарного индекса дисперсивна.
8. - подгруппа примарного индекса конечной группы , то .
9. - группа порядка , где и - простые числа, и . Пpeдnoлoжим, что каждая подгруппа непримарного индекса сверхразрешима. Тогда либо -группа, либо группа Шмидта , где - элементарная абелева, или группа кватернионов.
10. - группа порядка , где и - простые числа, и . Предположим, что каждая подгруппа непримарного индекса сверхразрешима. Тогда факторгруппа либо -группа, либо изоморфна и делит .
Третий посвящен неразрешимым группам с заданными подгруппами непримарного индекса. Здесь представлены:
D. класс замкнут относительно прямых произведений и разрешим. Если в конечной неразрешимой группе нет неединичных нормальных -подгрупп, то изоморфна одной из следующих групп: и - простое число или 9; или и .
1. конечная неразрешимая группа принадлежит , то , где , а и .
2. класс замкнут относительно прямых произведений, и - неразрешимая группа, принадлежащая . Если - минимальная нормальная в подгруппа, то либо , либо - простая неабелева группа, и , где .
3. класс разрешим и - простая неабелева группа из , то:
1) , , и или - простое число;
2) , и - простое число;
3) , , ;
4) , или , или соответственно.
В каждом параграфе подробно изучена соответствующая тема с теоремами леммами и доказательствами последних.
Строение конечных минимальных несверхразрешимых групп хорошо известно. В частности, они дисперсивны и их порядки делятся не более чем на три различных простых числа. Если условие сверхразрешимости накладывать не на все подгруппы, а только на некоторые, то возникают недисперсивные и даже неразрешимые группы. В описаны конечные группы со сверхразрешимыми подгруппами непримарного индекса. В настоящей заметке исследуется строение конечных групп со сверхразрешимыми подгруппами четного индекса. Доказывается следующая
A. Пусть - конечная группа и . Тогда и только тогда в группе все подгруппы четного индекса сверхразрешимы, когда выполняется одно из следующих утверждений:
1) - 2-группа;
2) - группа Фробениуса, ядро которой - минимальная нормальная подгруппа порядка , где - показатель 2 по каждому простому нечетному делителю порядка группы;
3) .
Здесь - центр группы , - наибольшая нормальная в подгруппа нечетного порядка. Через обозначим класс конечных групп, у которых все подгруппы четного индекса сверхразрешимы.
1. - наследственный гомоморф, т.е. каждая подгруппа и каждая факторгруппа группы также принадлежит осуществляется проверкой.
Отметим, что знакопеременная группа, но не содержится в . Поэтому не является формацией и не является классом Фиттинга.
Через обозначается симметрическая группа степени 4. Конечная группа называется -свободной, если в ней нет подгрупп и таких, что нормальна в и изоморфна .
2. , то ----свободна.
. Допустим противное, т.е. предположим, что существует секция , изоморфная . Тогда существует подгруппа индекса 2 в и изоморфна . Так как несверхразрешима, то - несверхразрешимая подгруппа четного в индекса. Противоречие. Лемма доказана.
Конечная группа называется 2-нильпотентной, если в ней существует нормальное дополнение к силовской 2-подгруппе. Полупрямое произведение нормальной подгруппы и подгруппы обозначается через .
3. и не 2-нильпотентна, то силовская 2-подгруппа в элементарная абелева или типа .
Если не 2-нильпотентна, то в существует 2-замкнутая подгруппа Шмидта , см. , с. 192. Так как несверхразрешима, то индекс в группе нечетен, и - силовская 2-подгруппа из . Из свойств подгрупп Шмидта следует, что элементарная абелева или типа .
4. - разрешимая группа и , то 2-длина группы не превосходит 1.
следует из леммы 3 и леммы 3.4 из .
5. - разрешимая группа и . Если и силовская 2-подгруппа из неабелева, то центр совпадает с центром .
Если G - 2-группа, то лемма справедлива.
Пусть не 2-группа. По лемме 4 подгруппа нормальна в . Через обозначим -холловскую подгруппу из . Так как имеет четный индекс, то сверхразрешима и . Теперь содержится в центре , а поскольку , то - 2-группа. Группа не является 2-нильпотентной, поэтому существует 2-замкнутая подгруппа Шмидта . Поскольку не 2-нильпотентна, то индекс нечетен и - силовская 2-подгруппа из . Следовательно, содержится в и по лемме 2.2 получаем, что содержится в . Лемма доказана.
6. - разрешимая группа и . Тогда и только тогда , когда - группа Фробениуса, ядро которой - минимальная нормальная подгруппа порядка , где - показатель 2 по каждому нечетному простому делителю порядка группы .
Пусть - разрешимая группа, и . Из лемм 3,4 и 5 получаем, что силовская 2-подгруппа нормальна в и является элементарной абелевой подгруппой. Так как - не 2-группа, то в существует 2-замкнутая подгруппа Шмидта , где - силовская 2-подгруппа из . Подгруппа несверхразрешима, поэтому ее индекс нечетен и силовская в . Из свойств групп Шмидта следует, что - минимальная нормальная в подгруппа порядка , и - показатель 2 по модулю , где делит . Поэтому - минимальная нормальная в подгруппа.
Централизатор содержит и нормален в , поэтому и . Значит самоцентрализуема.
Пусть - -холловская подгруппа в . Тогда - максимальная в подгруппа и совпадает со своим нормализатором. Предположим, что существует неединичный элемент в такой, что не содержится в . Так как и содержится в , то и . Пусть . Тогда , а по теореме Машке в существует подгруппа такая, что и допустима относительно , т.е. . Но индекс подгруппы четен поэтому эта подгруппа сверхразрешима и . Теперь централизует всю силовскую подгруппу , противоречие.
Следовательно, содержится в для всех неединичных элементов из и - группа Фробениуса с ядром , см. , с.630.
Пусть - произвольный нечетный делитель порядка группы , и пусть - -холловская подгруппа из . Так как самоцентрализуема, то не 2-нильпотентна и в существует 2-замкнутая подгруппа Шмидта . Поскольку не 2-нильпотентна, то ее индекс нечетен и - элементарная абелева подгруппа порядка . Из свойств групп Шмидта следует, что - показатель 2 по модулю . Необходимость доказана.
Обратно, пусть - группа Фробениуса, ядро которой - минимальная нормальная в подгруппа порядка где - показатель 2 по каждому нечетному простому делителю порядка . Пусть - произвольная подгруппа из . Тогда либо , либо , либо , либо - группа Фробениуса с ядром . Если , то индекс нечетен. Если или , то 2-нильпотентна. Пусть - группа Фробениуса и не содержится в . Поскольку не 2-нильпотентна, то в существует 2-замкнутая подгруппа Шмидта , где - нормальная в силовская подгруппа порядка , а - циклическая -подгруппа. Так как - элементарная абелева, то из свойств группы Шмидта вытекает, что - показатель 2 по модулю , значит и , т.е. . Лемма доказана полностью.
Следствие. Пусть - разрешимая группа и . Тогда и только тогда , когда каждая подгруппа из четного индекса является 2-подгруппой или группой нечетного порядка.
1. Пусть - элементарная абелева группа порядка . В группе ее автоморфизмов существует самоцентрализуемая циклическая подгруппа порядка см. , с.187. Число 11 является показателем 2 по модулю 23 и по модулю 89. Поэтому в классе существует группа Фробениуса, удовлетворяющая заключению леммы, и не являющаяся группой Шмидта.
Лемма 7. и - простая неабелева группа, то .
Если силовская 2-подгруппа в типа то по теореме из . Но в этой группе есть несверхразрешимая подгруппа четного индекса в нормализаторе силовской 2-подгруппы. По лемме 3 силовская 2-подгруппа в элементарная абелева. В группах Янко и Ри есть неразрешимые подгруппы четного индекса в централизаторах инволюций.
Рассмотрим группу , где и . Если , то - несверхразрешимая подгруппа четного индекса. Следовательно, . В силовская 2-подгруппа имеет порядок 4 и несверхразрешимые подгруппы изоморфны знакопеременным группам и .
Рассмотрим . Если не простое, то содержит подгруппу , , четного индекса, которая несверхразрешима. Значит, - простое. Несверхразрешимыми в являются только нормализаторы силовских 2-подгрупп.
Из теоремы Уолтера следует, что других простых групп, кроме рассмотренных, нет.
Через обозначим разрешимый радикал группы .
8. и , то .
Пусть - минимальная нормальная в подгруппа. Тогда . Если , то индекс в четен и должна быть сверхразрешимой. Противоречие. Поэтому - простая подгруппа и изоморфна или . Теперь нечетен, и - подгруппа из .
Если , то , поэтому .
Пусть , - простое. Так как - циклическая группа порядка , то либо совпадает с , либо G совпадает с . Пусть и - подгруппа из N порожденная инволюцией. Так как внешний автоморфизм группы централизует , см. , с.317, то по теореме Машке в силовской 2-подгруппе группы есть подгруппа индекса 2 в , допустимая относительно . Теперь - - не 2-нильпотентная подгруппа четного индекса в и не принадлежит .
9. для .
Пусть - подгруппа четного индекса в группе , где , и пусть - центральная инволюция в . Если , то - подгруппа в четного индекса. Так как , то сверхразрешима, поэтому и сверхразрешима.
Пусть не принадлежит . Тогда . Допустим, что несверхразрешима. Так как - подгруппа из , то из доказательства леммы 7 следует, что изоморфна или . Но теперь силовская 2-подгруппа в элементарная абелева, противоречие.
теоремы. Достаточность вытекает из лемм 6-9. Докажем необходимость. Пусть вначале - разрешимая группа, и . Если - не 2-группа, то легко проверить, что и по лемме 6 группа из пункта 2 теоремы.
Пусть неразрешима. Если , то по лемме 8 теорема верна. Пусть . Если разрешима, то разрешима и группа , противоречие. Следовательно, подгруппа имеет четный индекс в группе . Так как сверхразрешима и , то - 2-группа, отличная от силовской 2-подгруппы. Пусть - централизатор подгруппы в группе .
Для каждого нечетного простого подгруппа имеет четный индекс, поэтому сверхразрешима и 2-нильпотентна. Поэтому для всех нечетных и индекс в группе четен или равен 1. Если , то в есть нормальная подгруппа нечетного порядка, противоречие. Значит, и содержится в центре .
Если , то - квазипростая группа и не изоморфна . Так как , то по лемме 8 группа изоморфна или . Теперь по теореме из , с.646 группа изоморфна или .
Пусть - собственная в подгруппа. Тогда имеет нечетный индекс и . Так как - собственная в подгруппа, то из леммы 8 получаем, что изоморфна , a изоморфна . Противоречие. Теорема доказана полностью.
Задача С.Н. Черникова об описании конечных групп, у которых подгруппы непримарного индекса нильпотентны, решена в 1975 г. С.С. Левищенко. Конечные группы с формационными подгруппами непримарных индексов рассматривались А.В. Сидоровым.
В настоящей статье изучаются конечные группы со сверхразрешимыми подгруппами непримарного индекса. Доказаны следующие две теоремы.
B. неразрешимая группа, у которой все подгруппы непримарного индекса сверхразрешимы, изоморфна одной из следующих групп:
1) или , где - 5-группа;
2) , где - 3-группа.
C. - разрешимая недисперсивная группа, у которой все подгруппы непримарного индекса сверхразрешимы. Тогда бипримарна, и - дисперсивная группа порядка , где .
Далее, если , то
и делит . Если , то
группа Шмидта, и Q - элементарная абелева группа или группа кватернионов.
Здесь - наибольшая нормальная в -подгруппа; - подгруппа Фиттинга группы ; - циклическая группа порядка .
1. конечная группа, в которой каждая подгруппа непримарного индекса сверхразрешима. Тогда в любой подгруппе и в любой фактор-группе группы каждая подгруппа непримарного индекса сверхразрешима.
Осуществляется непосредственной проверкой.
Группа называется -замкнутой, если в ней силовская -подгруппа нормальна, и -нильпотентной, если в ней имеется нормальное дополнение к силовской -подгруппе. Свойства групп Шмидта хорошо известны.
2. - конечная группа и - простое число, делящее порядок . Если в нет -замкнутых подгрупп Шмидта, то -нильпотентна.
Если - собственная подгруппа в группе , то удовлетворяет условию леммы, по индукции подгруппа -нильпотентна. Теперь группа либо -нильпотентна, либо -замкнутая группа Шмидта (см. , с. 192). Последнее исключается условием леммы.
3. - сверхразрешимая группа Шмидта с нормальной силовской -подгруппой и циклической силовской -подгруппой , то .
Все главные факторы сверхразрешимой группы имеют простые порядки. Так как - главный фактор, то
Определения дисперсивных групп см. в , с.251. Конечная группа называется трипримарной, если ее порядок делится точно на три различных простых числа.
... . Пусть вначале . Тогда и неабелева. По теореме П. Фонга из группа диэдральная или полудиэдральная. Но в этих случаях . Непосредственно проверяется, что диэдральная и полудиэдральная группа порядка 16 не является произведением двух групп порядка 4. Предположим теперь что . Тогда - элементарная абелева подгруппа или диэдральная. Если абелева, то или группа Янко порядка 175560. Так как ...
... результат работы(6), мы доказываем в настоящей заметке следующую теорему. Теорема Пусть конечная группа является произведением своих подгрупп и взаимно простых порядков, и пусть --- бипримарная группа, а --- 2-разложимая группа четного порядка. Предположим, что в есть неединичная циклическая силовская подгруппа . Тогда, если неразрешима, то изоморфна или . обозначает произведение ...
... . Другими словами, найдется такой ненулевой элемент из , что для всех из . Но тогда для всех из . Поэтому . Структурные теоремы. Порядки симплектических групп Предложение Если поле бесконечно, то группы , над также бесконечны. Доказательство. Число трансвекций из бесконечно. Теорема Порядок группы равен Порядок группы равен Доказательство. Второе утверждение ...
0 комментариев