2.7 Типовые звенья автоматических систем управления

При исследовании САУ ее разбивают на простые звенья. В результате этого математическое описание каждого звена может быть составлено без учета связей его с другими звеньями, а описание всей САУ получено как совокупность уравнений отдельных звеньев.

Уравнение усилительного звена имеет вид:

y = Kx. (36)

Передаточная функция в этом случае:

W(p) = K. (37)

Амплитудно-фазовая характеристика:

W(jw) = K. (38)

Примером усилительного звена является рычаг. Уравнение рычага имеет вид

Уравнение апериодического звена имеет вид:

. (39)


Передаточная функция:

 (40)

Амплитудно-фазовая характеристика:

 (41)

АФЧХ представляет собой полуокружность с радиусом K/2 и центром в точке (K/2,j*0) на действительной оси (рис.10).

Логарифмическая амплитудная частотная характеристика

 (42)

При малых значениях w << 1/Т

 (43)

На больших частотах, когда w >> 1/T

. (44)

В соответствии с выражениями (43) и (44) на рис.10, б приведена ЛАЧХ апериодического звена. Примером апериодического звена является рассмотренная ранее емкость.

Уравнение колебательного звена:


 (45)


причем Т1 и Т2 связаны условием

(46)

Это условие означает, что корни характеристического уравнения вида

 

 (47)

соответствуют дифференциальному уравнению (45), являются комплексными. Передаточная функция, соответствующая уравнению (45), имеет вид

 (48)

Переходная функция, являющаяся решением уравнения (45) при х = l(t), приведена на рис.11.

Амплитудно-фазовая характеристика звена (рис.12):


. (49)

Примером колебательного звена являются электрический резонансный контур (рис.13)и двухъемкостная схема (рис.14).

Если в уравнении (45) выполняется условие

, (50)

то характеристическое уравнение (47) имеет отрицательные действительные корни. В этом случае звено называется апериодическим звеном второго порядка. Все рассмотренные выше звенья называются статическими.

Уравнение интегрирующего звена:

 (51)

или в интегральной форме:

 (52)



Переходная функция интегрирующего звена имеет вид (рис.15, а):

; (53)

передаточная функция:

 (54)


амплитудно-фазовая характеристика (рис.15, б):

 (55)

Иногда применяется другая форма записи уравнения интегрирующего звена:

 (56)

Примером интегрирующего звена является емкость с притоком жидкости сверху, причем расход на стоке не зависит от уровня в емкости (рис.16). Такая емкость не обладает самовыравниванием на притоке. Интегрирующее звено называется астатическим.

Уравнение дифференцирующего звена:


 (57)

переходная функция:

; (58)

передаточная функция:

; (59)

амплитудно-фазовая характеристика:

, (60)


т.е. она совпадает с положительной мнимой полуосью.

Характеристики дифференцирующего звена обратны характеристикам интегрирующего звена. Идеальных дифференцирующих звеньев в природе не существует, но они используются при анализе сложных систем, из которых можно выделить дифференцирующие звенья.

Звено с запаздыванием без искажения воспроизводит на выходе входную величину, задерживая ее на время запаздывания t.

Уравнение такого звена имеет вид:


; (61)

передаточная функция:

; (62)

амплитудно-фазовая характеристика:

. (63)

Примерами таких звеньев являются транспортеры (рис.17), длинные трубопроводы и т.д. Если известны расстояние l и скорость движения ленты транспортера v, то запаздывание можно определить по формуле

. (64)


Информация о работе «Математическое моделирование и расчет систем управления техническими объектами»
Раздел: Математика
Количество знаков с пробелами: 68359
Количество таблиц: 14
Количество изображений: 22

Похожие работы

Скачать
38437
0
1

... балансовой, матричной моделью, причем выделяют как статические, так и динамические модели межотраслевого баланса[12].   2. Основные направления применения методов и моделей исследования систем управления в современной экономике Производственная функция одной переменной Y = f(x) — функция, независимая переменная которой принимает значения объемов затрачиваемого ресурса (фактора производства), ...

Скачать
59152
14
0

... экспертов-консультантов - растет тенденциозность и безответственность Информационные : конференции улучшение информационной системы руководства практика открытых дверей Лекция 8 27.03.97 Методы исследования систем управления. План. Классификация методов в соответствии с решаемыми задачами. Учет закономерностей функционирования и развития систем при выборе методов их анализа. Краткая ...

Скачать
222848
26
34

... своевременное распределение средств на развитие. Данными вопросами я и занимаюсь в настоящей дипломной работе. 4. Математическое моделирование Интернет - услуг 4.1 Математическое моделирование dial-up подключений Сначала рассмотрим моделирование услуги предоставления доступа в Интернет по dial-up, так как данная услуга является показателем потенциальных абонентов для монопольной услуги ...

Скачать
50434
0
2

... целом как сложной системы в различных условиях. Вычислительные эксперименты с математическими моделями дают исходные данные для оценки показателей эффективности объекта. Поэтому математическое моделирование как методология организации научной экспертизы крупных проблем незаменимо при проработке народнохозяйственных решений. (В первую очередь это относится к моделированию экономических систем[6]). ...

0 комментариев


Наверх