Погрешности результатов измерений

Кинематика и динамика поступательного движения
Погрешности результатов измерений Статистический анализ случайных погрешностей Абсолютная погрешность суммы и разности равна квадратичной сумме абсолютных погрешностей Микрокалькулятор Проверяют вертикальность установки машины Атвуда. Балансируют грузы По угловому коэффициенту полученной прямой определяют значение приложенной силы и сравнивают ее с реально действующей в системе Определить по графику все значения момента силы трения и найти его среднее значение. Сравнить полученный результат с ранее измеренным в задании 1 Анализируют вклад погрешностей измерений всех величин в общую погрешность и указывают, какая из величин должна быть измерена с наибольшей точностью В выводе сравнивают измеренное и табличное значения ускорения свободного падения Для получения биений используют два одинаковых генератора ГЗ-33 В выводе сопоставляют измеренные и вычисленные значения скорости Если число колебаний N в первом и втором случаях одинаково, то формулы (13.14) и (13.15) можно записать через время и число колебаний На нижнем конце проволоки вблизи зажима белой краской наносят кольцевую метку
136506
знаков
5
таблиц
32
изображения

1. Погрешности результатов измерений

Истинное значение физической величины обычно точно определить нельзя. Корректный способ представления результатов любого измерения состоит в том, что экспериментатор указывает свою наилучшую оценку измеряемой величины xнаил и интервал, в котором, как он уверен, она лежит:

 (измеренная величина)  (1)

Например: g=9,82±0,02м/с2.

Величину Dх называют абсолютной погрешностью или доверительным интервалом определения х.

В студенческой лаборатории полученные абсолютные погрешности обычно должны округляться до одной значащей цифры, например Dg=0,02385м/с2»0,02м/с2.. Но, пожалуй, не стоит делать округление типа 0,14»0,1, ведь это сразу на 40% уменьшает погрешность.

Запись результата измерения в виде (1) необходимо делать так, чтобы последняя значащая цифра должна быть того же порядка (находиться в той же десятичной позиции), что и погрешность. Например: 92,8±0,3; 93±3; 90±30.

Очевидно, что качество измерения характеризуется не только самой абсолютной погрешностью, но также и отношением Dx к xнаил, т.е. относительной погрешностью измерения

. (2)

По-видимому, простейший тип учебного эксперимента - измерение величины, принятое значение которой известно. Например, эксперимент по определению скорости звука в воздухе обычно завершается сравнением измеренного значения скорости (допустим, 329±5м/с) с принятым (табличным) значением 331м/с. Очевидно, что вывод в данном случае может быть таким: «Измеренное значение скорости звука совпадает с табличным значением с точностью до погрешности измерения». Измерение может рассматриваться как удовлетворительное, даже если принятое значение слегка выходит за рамки измеренного интервала (допустим, 325±5м/с).

Во многих экспериментах измеряют два значения, которые, согласно теории должны быть равны. Две величины считаются равными, если их измеренные интервалы перекрываются. Например, импульсы р1 = 1,51±0,04 кг×м/с и р2= 1,56±0,06 кг×м/с можно

считать «равными с точностью до погрешностей измерений».

Все погрешности подразделяют на систематические, случайные и промахи.

Систематической называют такую погрешность, которая остается постоянной или закономерно изменяется при повторных измерениях одной и той же величины. Такие погрешности возникают в результате конструктивных особенностей измерительных приборов, неточности метода исследования, каких-либо упрощений экспериментатора, применении для вычислений неточных формул, округления констант. Систематические погрешности либо увеличивают, либо уменьшают результаты измерений. В любом измерительном приборе заложена та или иная систематическая погрешность, которую невозможно устранить, но которую можно учесть.

Случайные погрешности – ошибки, появление которых не может быть предупреждено, а их величина непредсказуема. Поэтому случайные погрешности могут оказать определенное влияние на отдельное измерение, но при многократных измерениях они подчиняются статистическим законам и их влияние на результаты измерений можно учесть или значительно уменьшить.

Промахи и грубые погрешности, – чрезвычайно большие ошибки, явно искажающие результаты измерения. Этот класс погрешностей вызван чаще всего неправильными действиями наблюдателя. Измерения, содержащие промахи, следует отбросить.

Для оценки полной погрешности необходимо знать и случайную и систематическую погрешности.

2. Оценка точности результатов одного прямого измерения

Если при повторении измерений в одних и тех же условиях 3 – 4 раза получено одно и то же значение, то это означает, что измерения не обнаруживают случайных изменений, а погрешность обусловлена только систематической погрешностью. Систематическая погрешность в данном случае определяется погрешностями измерительных приборов и часто называется инструментальной или приборной погрешностью. Есть несколько способов задания этой погрешности:

а) Для некоторых приборов инструментальная погрешность дается в виде абсолютной погрешности. Например, для штангенциркуля, в зависимости от конструкции его нониуса,– 0,1 мм или 0,05 мм, для микрометра – 0,01 мм.

б) Для характеристики большинства измерительных приборов часто используют понятие приведенной погрешности dп (класса точности).

Приведенная погрешность – это отношение абсолютной погрешности Dх к предельному значению хпр измеряемой величины (т.е. к наибольшему её значению, которое может быть измерено по шкале прибора). Приведенная погрешность обычно дается в процентах:

 . (3)

По величине приведенной погрешности приборы разделяют на семь классов: 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4.

Зная класс прибора, можно рассчитать его абсолютную погрешность. Например, вольтметр имеет шкалу делений в пределах от 0 до 300 В (хпр=300 В) и класс точности 0,5. Тогда

.

в) В некоторых случаях используется смешанный способ задания инструментальной погрешности. Например, весы технические (Т–200) имеют класс точности 2. В то же время указывается, что при нагрузке до 20 г абсолютная погрешность равна 5 мг, до 100 г – 50 мг, до 200 г – 100 мг. Набор школьных гирь относится 4-му классу точности, а допустимые погрешности масс гирь указаны в таблице 1.


Таблица 1

Номинальное значение, г

100

50

20

10

5

2

1

Абсолютная погрешность, мг

+40

+30

+20

+12

+8

+6

+4

Номинальное значение, г

500

200

100

50

20

10

5

Абсолютная погрешность, мг

±3

±2

±1

±1

±1

±1

±1

Если, например, при взвешивании на таких весах с таким набором гирь получено значение массы тела 170 г (100 г + 50 г + 20 г), то абсолютная погрешность взвешивания равна: Dх = 40 + 30 + 20 + 100 = 200 (мг)=0,2(г).

г) В тех случаях, когда класс точности прибора не указан, абсолютная погрешность принимается равной половине цены наименьшего деления шкалы прибора. Так при измерении линейкой, наименьшее деление которой 1 мм, абсолютная погрешность равна 0,5 мм.


Информация о работе «Кинематика и динамика поступательного движения»
Раздел: Физика
Количество знаков с пробелами: 136506
Количество таблиц: 5
Количество изображений: 32

Похожие работы

Скачать
67410
17
19

... самопроизвольно протекать не может, необходим подвод энергии извне. 2-й закон термодинамики с использованием понятия энтропии формулируется так: Все процессы в природе протекают в направлении увеличения энтропии, энтропия замкнутой системы не может самопроизвольно уменьшаться. В статистической физике энтропию связывают с термодинамической вероятностью состояния системы – с числом ...

Скачать
121629
26
25

... в 2 раза. 180. Найти относительную скорость движения двух частиц, движущихся навстречу друг другу со скоростями u1 = 0,6×c и u2 = 0,9×c. II. ОСНОВЫ МОЛЕКУЛЯРНОЙ ФИЗИКИ И ТЕРМОДИНАМИКИ Молекулярная физика и термодинамика – разделы физики, в которых изучаются макроскопические процессы в телах, связанные с огромным числом содержащихся в них атомов и молекул (макроскопические системы ...

Скачать
68032
2
4

... условий взаимной уравновешенности системы сил является одной из основных задач статики. На основе изложенной в первой главе курсовой работы алгоритм конструкции языка программирования Паскаль составим и решим ряд задач по прикладной механике. Сформулируем задачу по статике первому разделу прикладной механики. Задача. Найти центр тяжести тонкого круглого однородного стержня изогнутого по дуге ...

Скачать
26011
13
22

... тела - найти характеристики движения самого тела и отдельных его точек. В данном задании к таким характеристикам относятся векторы угловой скорости и углового ускорения тела. Рис. 1 Основные формулы кинематики плоского движения твердого тела - векторные формулы, связывающие соответственно скорости и ускорения двух произвольных точек плоской фигуры, например, точек А и В (рис. 1) B = A ...

0 комментариев


Наверх