Анализируют вклад погрешностей измерений всех величин в общую погрешность и указывают, какая из величин должна быть измерена с наибольшей точностью

Кинематика и динамика поступательного движения
Погрешности результатов измерений Статистический анализ случайных погрешностей Абсолютная погрешность суммы и разности равна квадратичной сумме абсолютных погрешностей Микрокалькулятор Проверяют вертикальность установки машины Атвуда. Балансируют грузы По угловому коэффициенту полученной прямой определяют значение приложенной силы и сравнивают ее с реально действующей в системе Определить по графику все значения момента силы трения и найти его среднее значение. Сравнить полученный результат с ранее измеренным в задании 1 Анализируют вклад погрешностей измерений всех величин в общую погрешность и указывают, какая из величин должна быть измерена с наибольшей точностью В выводе сравнивают измеренное и табличное значения ускорения свободного падения Для получения биений используют два одинаковых генератора ГЗ-33 В выводе сопоставляют измеренные и вычисленные значения скорости Если число колебаний N в первом и втором случаях одинаково, то формулы (13.14) и (13.15) можно записать через время и число колебаний На нижнем конце проволоки вблизи зажима белой краской наносят кольцевую метку
136506
знаков
5
таблиц
32
изображения

4. Анализируют вклад погрешностей измерений всех величин в общую погрешность и указывают, какая из величин должна быть измерена с наибольшей точностью.

Задание 2. Вычисление момента инерции махового колеса

Необходимо рассчитать момент инерции махового колеса, исходя из его конструкции и геометрических размеров. Плотность железа принять равной 7,8 г/см3. Погрешность этого расчета можно не определять. Рассчитанное значение момента инерции сравнивают с измеренным.
ИЗУЧЕНИЕ ЗАКОНОВ СОХРАНЕНИЯ ЭНЕРГИИ И ИМПУЛЬСА ПРИ УДАРЕ Цель работы

Ознакомиться с явлением удара на примере соударения подвешенных на нитях шаров.

Идея эксперимента

Исследование упругого и неупругого удара шаров позволяет экспериментально проверить законы сохранения импульса и энергии, на базе которых выведены рабочие формулы, а также установить некоторые закономерности ударов. Проводится сопоставление теоретических выводов и экспериментально полученных результатов.

Теория

Удар – совокупность явлений, возникающих при кратковременном приложении к телу внешних сил, связанных со значительным изменении его скорости за очень краткий промежуток времени. Удар обычно протекает в течение тысячных или даже миллионных долей секунды. Удар называется центральным и прямым, если при ударе центры тяжести тел лежат на линии удара, а их относительная скорость параллельна линии удара. В зависимости от упругих свойств тел, характер удара может изменяться от абсолютно упругого до абсолютно неупругого. Рассеивание энергии при ударе, т.е. переход механической энергии в другие виды, характеризуется коэффициентом восстановления скорости kск или коэффициентом восстановления энергии kэ.

Коэффициент восстановления скорости определяется как отношение модуля относительной скорости тел после удара к модулю относительной скорости тел до удара

, (5.1)

где v1, v2 – скорости тел до удара, u1, u2 – скорости тел после удара.

Коэффициент восстановления энергии определяется как отношение суммарной кинетической энергии тел после удара к суммарной кинетической энергии тел до удара

 . (5.2)

Нетрудно убедиться, что для абсолютно упругого удара kэ=1 и kск=1, а для абсолютно неупругого удара kск=0. В реальных ударах 0<kэ<1 и 0<kск<1. Величина коэффициентов восстановления зависит от физических свойств материалов соударяющихся тел, от их формы, а для неупругого удара также в сильной степени зависит от масс соударяющихся тел.

В данной работе изучается центральный удар двух шаров, подвешенных на нитях. Опыты будут ставиться так, что один из шаров до удара покоится.

Упругий удар шаров

Обозначим массы шаров m1 и m2, скорости шаров до удара  и , скорости шаров после удара и  соответственно. К абсолютно упругому соударению шаров применим как закон сохранения импульса, так и закон сохранения механической энергии

 . (5.3)

Решение этой системы уравнений позволяет найти скорости шаров после удара

 и  , (5.4)

или, разделив числитель и знаменатель этих выражений на m1:

и , (5.5)

где a = m2/m1– отношение масс шаров.

Величина a всегда положительна, поэтому второй шар после удара всегда движется в ту же сторону, куда двигался первый шар до удара. Первый же шар после удара может продолжать движение в ту же сторону, что и до удара, если его масса больше массы второго шара (a<1), или же отскакивать, если его масса меньше массы второго шара (a>1). В случае равенства масс шаров (a=1), первый шар после удара останавливается, а второй шар, неподвижный до удара, начинает двигаться со скоростью первого шара (обмен скоростей).

Отношение кинетической энергии , переданной во время удара первоначально покоящемуся шару, к кинетической энергии ударяющего шара  определяется соотношением

.   (5.6)

Величину f можно условно назвать эффективностью упругого удара. Она дает долю энергии первого шара, которую получил второй шар после удара. Между величинами f и a существует взаимно однозначное соответствие, в то время как одному и тому же a могут соответствовать множество значений энергии в зависимости от начальных значений скорости . Нужно отметить, что ход f(a) не зависит от начальной скорости  или m1и m2, а только от отношения m2/m1. Исследование функции (5.6) показывает, что второй шар получает от первого наибольшую энергию в том случае, когда массы шаров равны, т. е. при a=1. При этом f=1 и , вся энергия достается второму шару, а первый после удара останавливается.

Как уже указывалось, в реальном ударе часть кинетической энергии шаров переходит во внутреннюю энергию, и в предлагаемом случае, когда , . Поэтому зависимость (5.6) выполняется только с определенной степенью точности.

Неупругий удар шаров

В сущности, любой реальный удар является неупругим. Рассмотрим такой неупругий удар, после которого шары «слипаются» и движутся с одинаковой скоростью . Применяя к этому удару закон сохранения импульса, можно получить выражение для общей скорости  шаров после удара

  или  , (5.7)

где a - по-прежнему отношение масс шаров.

Коэффициент восстановления энергии при неупругом ударе равен

. (5.8)

Он оказывается зависимым от отношения масс шаров.

Интересно также вычислить величину, которая показывает, какая часть кинетической энергии соударяющихся шаров преобразуется во внутреннюю энергию. Эту величину можно назвать эффективностью неупругого удара

, (5.9)

где и - суммарные энергии системы до и после удара.

Очевидно, что q, рассматриваемая как функция от a, есть неизменная теоретическая функция. В то же время, эта функция, будучи просчитана по результатам измерений энергий и , является экспериментальной и может отличаться от первой.

Экспериментальная установка Для экспериментального изучения центрального удара шаров используется установка, представленная на рис. 11. Она представляет собой систему двух шаров – левого (Л) и правого (П), подвешенных к штангам 1 на бифилярных (двойных) подвесах. Бифилярные подвесы обеспечивают движение шаров в одной вертикальной плоскости и предотвращают их вращение вокруг вертикальной оси. Длина подвесов устанавливается такой, чтобы в состоянии покоя центры шаров находились на одном уровне вне зависимости от их размеров.

Мгновенные скорости шаров до и после удара можно определить из закона сохранения энергии

.

Отсюда . В данном случае высоту поднятия шара h удобно выразить через угол отклонения шара j

, (5.10)

где l – длина подвеса шаров.

Отсчет углов отклонения шаров ведется по правой и левой круговым шкалам 2 со смещенными по горизонтали нулями.

Для удержания шаров в исходном положении установка снабжена двумя электромагнитами 3, которые обесточиваются с помощью тумблеров «Пуск».

К установке прилагается набор шаров, массы которых измерены с относительной погрешностью 1 % .

Проведение эксперимента

Задание 1. Изучение упругого столкновения шаров

Измерения

1. В качестве ударяющего обычно выбирается левый шар. Его отводят на угол 30 - 40°, который во всех опытах можно оставлять постоянным. Правый шар, согласно условиям этой работы, до удара должен быть неподвижным и находится в нижнем положении.

2. Перед каждым опытом проводят необходимую регулировку подвесов шаров для того, чтобы удар был центральным. В равновесном состоянии шары должны только касаться друг друга, а их центры должны находиться на одной высоте. Для проверки регулировки проводят несколько пробных соударений.

3. При отсчете углов отклонения шаров глаз нужно располагать так, чтобы он был в створе с обеими нитями. Будем считать углы отклонения шаров вправо - положительными, а углы отклонения влево и соответствующие им скорости – отрицательными. Так как трудно засечь значение двух углов одновременно, каждый опыт приходиться делать дважды: один раз для того, чтобы засечь угол отклонения правого шара, второй раз – левого.

4. Из набора шаров выбирают шар средней массы и укрепляют его на левом подвесе. На правом подвесе вначале укрепляют шар наименьшей массы.

5. Проводят не менее трех опытов для того, чтобы иметь возможность вычислить средние значения углов отклонения.

6. Далее проводят опыты со всеми другими шарами из набора, по очереди подвешивая их на правый подвес. Левый шар можно не менять. Все данные измерений заносят в таблицу 5.1 отчета.

 

Обработка результатов

1. Для каждого опыта вычисляют скорости шаров до и после удара. Вычисляют коэффициенты восстановления скорости и находят его среднее значение по результатам всех опытов. Вычисляют стандартное отклонение среднего значения коэффициента (табл. 5.2 отчета).

2. Для каждого опыта вычисляют кинетические энергии шаров до и после удара. Вычисляют кинетические энергии системы до и после удара. Вычисляют коэффициенты восстановления энергии и находят его среднее значение по результатам всех опытов. Вычисляют стандартное отклонение среднего значения коэффициента (табл. 5.3 отчета).

3. Подставляя в формулу (5.6) различные значения отношения масс шаров a (лучше брать те значения, которые имеются в опыте), вычисляют теоретические значения эффективности упругого удара fтеор.

4. Для каждого опыта вычисляют экспериментальную эффективность упругого удара fэксп., как .

5. Строят графики зависимости теоретического и экспериментального значений эффективности упругого удара от отношения масс шаров a (на одних координатных осях). Делают вывод о совпадении теории и эксперимента.

 

Задание 2. Изучение неупругого столкновения шаров

1.    Измерения

1. Для того чтобы получить неупругий удар шаров к неподвижному шару прикрепляют кусочек пластилина. Необходимо добиться, чтобы после удара шары двигались как одно целое.

2. Слева подвешивается шар средней массы. Правые шары меняются для того, чтобы получить различные отношения масс шаров. Результаты измерения углов отклонения заносят в таблицу 5.4 отчета.

 

Обработка результатов

1. Для каждого опыта вычисляют скорости и кинетические энергии шаров до и после удара (табл. 5.5 отчета). Вычисляют коэффициенты восстановления энергии шаров. Вычисляют эффективности неупругого удара qэкспер.

2. Подставляя в формулу (5.9) различные значения отношения масс шаров, вычисляют теоретические значения эффективности упругого удара qтеор.

3. Строят графики зависимости теоретического и экспериментального значений эффективности неупругого удара от отношения масс шаров a (на одних координатных осях). Делают вывод о совпадении теории и эксперимента.


ОПРЕДЕЛЕНИЕ СКОРОСТИ ПОЛЕТА ПУЛИ МЕТОДОМ БАЛЛИСТИЧЕСКОГО МАЯТНИКА

Цель работы

Изучение практического приложения теории неупругого удара, а также законов сохранения импульса и энергии.

Идея эксперимента

Скорость полета пули обычно достигает значительной величины. Поэтому прямое измерение скорости, т. е. определение времени, за которое пуля проходит известное расстояние, требует специальной аппаратуры. Много проще измерять скорость пули косвенными методами, среди которых широко распространены методы, использующие неупругие соударения, т. е. соударения, в результате которых сталкивающиеся тела соединяются вместе и продолжают движение как целое. К числу методов, основанных на этой идее, относится метод баллистического маятника.

Теория

Баллистический маятник представляет собой тяжелое тело, подвешенное на четырех нитях (рис. 12). Горизонтально летящая пуля попадает в маятник и застревает в нем, – происходит неупругий удар. После удара маятник начинает качаться на нитях, так что его продольная ось остается параллельной самой себе, центр масс перемещается по окружности, а тело в целом движется поступательно.

Соударение пули с маятником происходит в течение очень короткого промежутка времени, но за это время маятник приобретает некоторую скорость и незначительно сдвигается из положения равновесия. При таких малых перемещениях смещение маятника происходит практически без изменения высоты. При соударении пули с маятником справедлив закон сохранения импульса

, (6.1)

где m – масса пули, M – масса маятника, v – скорость пули, V – скорость маятника непосредственно после удара.

Чтобы определить величину V, нужно измерить высоту h, на которую поднимается маятник после удара. Из закона сохранения энергии получается

. (6.2)

Соотношения (6.1) и (6.2) дают

 . (6.3)

Высоту подъема центра масс маятника можно определить из рис. 13:

,

где R-расстояние от шкалы с миллиметровыми делениями до уровня подвеса маятника.

Учитывая, что h<<R, получаем: 2Rh = s2. Определяя отсюда h и подставляя в (6.3), получаем рабочую формулу метода

. (6.4)

Для определения скорости пули можно применить модифицированный баллистический метод, используя физический маятник в виде стержня или деревянной рейки, подвешенной за один конец (рис. 14).

Пуля, ударившись о линейку, приводит её в движение с некоторой угловой скоростью w и сообщает ей кинетическую энергию

 . (6.5)

Момент инерции линейки (стержня) находится по стандартной формуле

 . (6.6)

После удара линейка поворачивается на некоторый угол, причем центр ее тяжести поднимается на высоту h, которую, как и в первом опыте, можно найти из соотношений в треугольниках

 . (6.7)

По закону сохранения энергии

. (6.8)

К удару пули о линейку можно также применить закон сохранения момента импульса

, (6.9)

где M – масса линейки, m –масса пули, l – длина линейки, R – расстояние от точки удара пули до оси вращения линейки.

Соотношения (6.5) – (6.9) позволяют получить окончательную формулу для вычисления скорости пули (вывод рабочей формулы выполнить самостоятельно). При выводе можно считать, что l» R , т. к. выстрел обычно производиться в точку, расположенную вблизи конца линейки.

Экспериментальная установка

Используемый в данной работе баллистический маятник представляет собой обрезок трубы с пластилином, подвешенный на четырех нитях. В нижней части маятника укреплен визир. При перемещении маятника визир передвигает измерительную планку вдоль горизонтальной миллиметровой шкалы, что позволяет измерить смещение s. На некотором расстоянии от маятника укреплено пневматическое ружьё. При выстреле скорость пули направлена по прямой, проходящей через центр тяжести маятника и перпендикулярно к оси его вращения.

Для второго опыта деревянную линейку подвешивают на оси. Выстрел производиться в коробочку с пластилином, укрепленную на конце линейки.

Проведение эксперимента

Задание 1. Определение скорости пули с помощью баллистического маятника

Измерения

1. Знакомятся с конструкцией прибора, учатся пользоваться пневматическим ружьем.

2. Записывают исходные данные опыта: массу маятника М и расстояние R. Для выстрелов желательно использовать одну и ту же пулю, масса которой вместе с погрешностью ее измерения известны.

3. Производят 3 – 5 выстрелов. В каждом опыте записывают смещение s. Все полученные данные заносят в таблицу 6.1 отчета.

Обработка результатов

1. Расчет скорости пули проводится по формуле (6.4), в которую подставляется среднее по всем опытам значение s.

2. Выводят формулу для расчета погрешности измерения скорости пули. В качестве погрешностей измерения входящих в формулу масс берут заданные погрешности DМ и Dm. Погрешность DR выбирают, исходя из условия измерения величины R. Инструментальная погрешность измерения смещения s равна Ds = 0,5 мм.

Задание 2. Определение скорости пули с помощью физического маятника.

Измерения и обработка результатов

Баллистический маятник отводят в сторону и укрепляют на оси линейку. Методика проведения опыта аналогична той, которая используется в задании 1. Все данные заносят в таблицу 6.2. отчета.

В отчете необходимо представить рабочую формулу и формулу для расчета погрешности v.

В выводе необходимо сравнить результаты, полученные в первом и втором задании.


ИЗУЧЕНИЕ ФИЗИЧЕСКОГО МАЯТНИКА

Цель работы

Изучение основных закономерностей колебательного движения физического маятника.

Идея эксперимента

В эксперименте исследуется физический маятник, представляющий собой прямой стержень, колеблющийся вокруг осей, расположенных на разном расстоянии от центра тяжести стержня.

Теория

Колебания являются одним из наиболее распространенных видов движения. При достаточно малых отклонениях от положения равновесия колебания бывают обычно гармоническими.

Физическим маятником называется твердое тело, совершающее под действием силы тяжести колебания вокруг неподвижной горизонтальной оси О, не проходящей через центр масс С тела (рис. 15).

Если маятник выведен из положения равновесия на некоторый угол j, то составляющаясилы тяжести  уравновешивается силой реакции оси О, а составляющая  стремится возвратить маятник в положение равновесия. Все силы приложены к центру масс тела. При этом

 . (7.1)

Знак минус означает, что угловое смещение j и возвращающая сила имеют противоположные направления. При достаточно малых углах отклонения маятника

из положения равновесия sinj » j, поэтому Ft» -mgj. Поскольку маятник в процессе колебаний совершает вращательное движение относительно оси О, то оно может быть описано основным законом динамики вращательного движения

 , (7.2)

где М – момент силы Ft относительно оси О, J – момент инерции маятника относительно оси О, - угловое ускорение маятника.

Момент силы в данном случае равен

M = Ft×l = -mgj×l , (7.3)

где l – расстояние между точкой подвеса и центром масс маятника.

С учетом (7.2) уравнение (7.1) можно записать в виде

(7.4)

или

, (7.5)

где

Решением дифференциального уравнения (7.5) является функция

j =j0×cos(w0t+a) , (7.6)

позволяющая определить положение маятника в любой момент времени t. Из выражения (7.6) следует, что при малых колебаниях физический маятник совершает гармонические колебания (колебания, при которых колеблющаяся величина изменяется со временем по законам синуса или косинуса) с амплитудой колебаний j0, циклической частотой , начальной фазой a и периодом

, (7.7)

где L = J/(mg) – приведенная длина физического маятника, т.е. длина такого математического маятника, период которого совпадает с периодом физического маятника.

Формула (7.7) позволяет определить момент инерции твердого тела относительно любой оси, если измерен период колебаний этого тела относительно этой оси.

Если физический маятник имеет правильную геометрическую форму и его масса равномерно распределена по всему объему, в формулу (7.7) можно подставить соответствующее выражение для момента инерции (Приложение 3). Например, для физического маятника, имеющего вид однородного стержня, колеблющегося вокруг горизонтальной оси, перпендикулярной стержню, формула (7.7) приобретает вид

, (7.8)

где d – длина стержня, l – расстояние от оси качаний до центра тяжести стержня.

Экспериментальная установка

Применяемый в данной работе физический маятник состоит из однородного металлического стержня и опорной призмы, которая может перемещаться вдоль стержня. Можно также использовать стержень с отверстиями, с помощью которых маятник одевается на горизонтальную ось. Период колебаний маятника измеряется с помощью ручного или стационарного секундомера.

Проведение эксперимента

Задание 1. Изучение зависимости периода колебаний физического маятника от расстояния между осью качаний и центром тяжести маятника.

Измерения

Измеряют периоды колебаний Т физического маятника при различных расстояниях l между центром тяжести и осью качаний. Шаг изменения расстояния l выбирают с таким расчетом, чтобы получить 8-10 экспериментальных точек. Число колебаний в каждом опыте 15-20. Полученные данные заносят в таблицу 7.1 отчета.

Обработка результатов

1. Вычисляют периоды колебаний маятника во всех опытах.

2. Строят график зависимости периода колебаний маятника от расстояния l.

3. График T = f(l) представляет собой кривую сложной формы. Для дальнейшей обработки его следует линеаризировать. В качестве новых переменных выбирают Т2l и l2, т. е. строят график зависимости (Т2l) = f(l2). Если экспериментальные точки ложатся на прямую с небольшим разбросом, то можно сделать вывод о правильности формулы периода колебаний физического маятника.

4. Производят обработку результатов с помощью метода наименьших квадратов (МНК).

5. Используя полученное уравнение прямой, находят величины  и . Вычисляют погрешности измерения этих величин.

6. Вычисляют ускорение свободного падения g и погрешность его измерения.

7. Вычисляют длину стержня d и погрешность её измерения. Для вычисления используют раннее полученное значение g и погрешность его измерения.

8. Сравнивают полученное значение g с табличным значением, а величину d c длиной стержня. Делают вывод о точности проделанных измерений.

9. Для случая, когда расстояние l имеет наибольшее значение, вычисляют приведенную длину физического маятника.

Задание 2. Определение моментов инерции тел различной формы методом колебаний.

1. Из набора тел к работе берут (по указанию преподавателя) одно и измеряют период его колебаний относительно произвольной оси.

2. С помощью формулы (7.7) вычисляют момент инерции тела относительно оси качаний.

3. Производят необходимые геометрические измерения и, зная массу тела, вычисляют момент инерции тела относительно центра масс. С помощью теоремы Гюйгенса – Штейнера рассчитывают момент инерции тела относительно оси, проходящей через ось качаний. Измеренный и вычисленный результаты сравнивают в выводе.


ИЗУЧЕНИЕ КОЛЕБАТЕЛЬНОГО ДВИЖЕНИЯ С ПОМОЩЬЮ МАТЕМАТИЧЕСКОГО МАЯТНИКА

Цель работы

Изучение основных закономерностей колебательного движения математического маятника.

Идея эксперимента

В эксперименте исследуется колебательное движение груза, подвешенного на длинной нити. Соотношение его элементов таково, что этот физический маятник с достаточной степенью точности может считаться моделью математического маятника.

Теория

Маятник – тело, совершающее колебательное движение под действием квазиупругой

силы. Простейший маятник – массивный груз на подвесе. Если подвес нерастяжим, размеры груза пренебрежимо малы по сравнению с длиной подвеса и масса нити пренебрежимо мала по сравнению с массой груза, то груз можно рассматривать как материальную точку, находящуюся на неизменном расстоянии l от точки подвеса О. Такой маятник называется математическим.

На маятник действуют силы: натяжения нити и тяжести , которые в положении равновесия компенсируют друг друга. Для возбуждения колебаний маятник выводят из положения равновесия (рис.16). Теперь  и маятник обладает избыточной потенциальной энергией mgh по отношению к положению равновесия. Эта энергия обуславливает колебание, происходящее по окружности и описываемое основным уравнением динамики вращательного движения

, (8.1)

где - результирующий вращающий момент, - угловое ускорение, J = ml2 – момент инерции шарика относительно оси ОО¢, проходящей через точку подвеса О, перпендикулярно плоскости колебаний (плоскости чертежа). Результирующий момент силы натяжения нити и силы тяжести равен

 . (8.2)

Тогда

  . (8.3)

Угол - вектор, направленный от читателя вглубь, так как отсчет угла ведется по часовой стрелке. Векторы  направлены по оси вращения.

Спроецируем выражение (8.3) на ось ОО¢. Примем за положительное направление оси направление вектора . Тогда

, (8.4)

где - радиус-вектор точки, модуль которого равен длине подвеса .

Очевидно, что угол , а угол . Тогда

 . (8.5)

Или, так как

. (8.6)

Для достаточно малых углов sinj»j, тогда

 , (8.7)

где .

Решение уравнения (8.7) представляет собой гармоническую функцию, соответствующую гармоническому колебанию

, (8.8)

где j0 – амплитуда, w0 – частота так называемых собственных колебаний, a0 – начальная фаза.

Мы видим, что w0 оказывается циклической частотой этого колебания с периодом

 . (8.9)

Решение уравнения (8.6) сложнее и представляет собой колебание с непрерывно изменяющейся частотой, которой соответствует период

 . (8.10)

Экспериментальная установка

Используемый маятник – шарик на бифилярном (двойном) подвесе. (рис. 17). Прибор состоит из горизонтальной планки Г, прикрепленной к стене, вертикальной шкалы Ш, подвеса П с шариком и устройства У для изменения длины маятника. Вверху прибора может быть укреплен транспортир для отсчета углов

отклонения маятника. Кроме того, угол может задаваться по первоначальному отклонению маятника: . Маятник может быть снабжен таймером, который позволяет отсчитывать время некоторого заранее заданного числа колебаний.

Проведение эксперимента

Задание 1. Проверка независимости периода колебаний математического маятника от амплитуды при малых углах отклонения

Измерения и обработка результатов

Согласно теории период колебаний математического маятника практически не зависит от амплитуды колебаний при углах отклонения менее 5° – формула (8.10). Во всяком случае, эта зависимость лежит за пределами точности измерений периода в нашем опыте – 0, 01 с. При малых углах отклонения оказывается справедливой формула (8.9). Это утверждение и подлежит проверке в данном задании.

1. Измеряют период колебаний математического маятника при постоянной длине (» 2 м) и массе маятника при углах отклонения 1°, 2°, 3°,4°и 5°. Число колебаний выбирают равным 15-20. Данные заносят в таблицу 8.1 отчета.

2. Вычисление периода колебаний производят с точностью до 0,001 секунды. Если различие в периоде колебаний не превышает 0,01 с, то можно сделать вывод о практической независимости периода колебаний математического маятника от амплитуды при малых углах отклонения.

Задание 2. Проверка зависимости периода колебаний математического маятника от амплитуды при углах отклонения, больших 5°.

1. Измеряют период колебаний математического маятника при постоянной длине (» 2 м) и массе маятника при больших углах отклонения от 5° до 60° с шагом 5° . Число колебаний выбирают равным 15-20. Вычисляют период колебаний с точностью до 0,001 с. Данные заносят в таблицу 8.2 отчета.

2. С помощью формулы (8.10) , используя два первых члена формулы, вычисляют теоретические значения периодов колебания математического маятника при заданной длине маятника и выбранных углах.

3. На одном графике строят теоретическую и экспериментальную зависимости периодов колебаний математического маятника от угла отклонения. Обе кривые должны если не совпадать, то, во всяком случае, иметь одинаковый ход. В выводе надо объяснить некоторое несовпадение двух кривых.

Задание 3. Проверка независимости периода колебаний математического маятника от его массы.

1. Для проверки необходимо использовать тела разной массы, но имеющие одинаковые размеры и форму, что позволяет считать силу сопротивления воздуха во всех опытах одинаковой. При этом тела не обязательно должны иметь шарообразную форму. Угол отклонения маятника из положения равновесия не должен превышать 5°.

Задание 4. Изучение зависимости периода колебаний математического маятника от его длины и определение ускорения свободного падения.

1. Подвешивают на нити стальной шар. Длину подвеса изменяют в пределах от 0,8 до 2,5 м с шагом приблизительно 20 см. Число колебаний в каждом опыте 20-30. Полученные данные заносят в таблицу 8.4 отчета. Угол отклонения маятника из положения равновесия не должен превышать 5°.

2. Зависимость Т=f(l) нелинейная. Поэтому для удобства экспериментальной проверки эту зависимость следует линеаризировать. Для этого можно, например, построить график зависимости квадрата периода колебаний от длины маятника. Если экспериментальные точки ложатся на прямую с небольшим разбросом, то можно сделать вывод о выполнении формулы (8.9).

3. Для определения с помощью полученного графика ускорения свободного падения сначала необходимо получить точное уравнение экспериментальной прямой. Для этого

применяют метод наименьших квадратов (МНК). Находят угловой коэффициент прямой, т.е. значение коэффициента k в полученном уравнении. Вычисляют ускорение свободного падения.

По формулам МНК определяют погрешность измерения g.


ОПРЕДЕЛЕНИЕ УСКОРЕНИЯ СВОБОДНОГО ПАДЕНИЯ ПРИ ПОМОЩИ ОБОРОТНОГО МАЯТНИКА

Цель работы

Изучение метода оборотного маятника для определения ускорения свободного падения.

Идея эксперимента

Применение оборотного маятника основано на свойстве сопряженности центра качания и точки подвеса. Это свойство заключается в том, что во всяком физическом маятнике можно найти такие две точки, что при последовательном подвешивании маятника за ту или другую из них период колебаний его остается одним и тем же. Расстояние между этими точками определяет собой приведенную длину данного маятника.

Теория и описание экспериментальной установки

Если амплитуда физического маятника мала, то период его колебаний определяется формулой

 , (9.1)

где J - момент инерции физического маятника относительно оси качания, l1 -расстояние между осью качания и центром тяжести маятника, m - масса маятника.

По теореме Гюйгенса-Штейнера

,  (9.2)

где J0 - момент инерции относительно оси, проходящей через центр тяжести и параллельной оси качаний, а величины J, m и l1 те же, что и в формуле (9.1).

Если последовательно подвешивать маятник в двух точках, то периоды его колебаний определяются уравнениями

 (9.3)

Отсюда имеем

(9.4)

Для величины ускорения свободного падения из последней формулы после преобразований получаем уравнение, данное Бесселем:

 , (9.5)

где l=l1+l2 -приведенная длина маятника.

Если периоды равны между собой (T1=T2=T), уравнение принимает вид

(9.6)

Добиться полного равенства периодов нелегко. Формула Бесселя позволяет достаточно просто и с неменьшей степенью точности определить величину ускорения при приближенном равенстве периодов колебаний.

Пусть T1 и Т2 близки друг к другу, а величины а1 и а2сильно отличаются одна от другой. В этом случае, как видно из формулы (9.5), нет необходимости определять величины а1 и а2 с большой степенью точности (не точнее чем 1 мм).

Оборотные маятники имеют различную форму. Они обычно состоят из металлического стержня длиной свыше 1 м. По стержню могут передвигаться и закрепляться тяжелые и легкие чечевицы (грузы) и опорные призмы.

Проведение эксперимента

Измерения и обработка результатов.

1. Готовят оборотный маятник к измерениям. Опорные призмы рекомендуется расположить на расстояниях 20 - 25 см от концов маятника. Подвижную чечевицу последовательно перемещают с шагом 1-2 см от конца маятника к призме П2. В отчете выполняют чертеж маятника с указанием всех размеров, определяющих геометрию маятника.

2. Маятник приводят в колебание на опорной призме П1 и определяют период колебаний Т1. Измерение периода проводят, беря не менее 10 колебаний. Угловая амплитуда колебаний не должна превышать 4°.

3. Меняют ось колебаний, подвешивая маятник на другой призме. Проводят измерения периода Т2.

4. Перемещают чечевицу А2. Снова измеряют периоды колебаний на призмах П1 и П2. И т. д. Данные измерений заносят в таблицу 9.1 отчета.

5. По полученным данным строят графики зависимостей Т1 = f1(d) и Т2 = f2(d), где d - расстояние от призмы П2 до подвижной чечевицы. Точка пересечения кривых определяет такое положение чечевицы А2, при котором значения периодов наиболее близки.

6. Для найденного положения чечевицы А2 определяют периоды колебаний Т1 и Т2(в прямом и перевернутом положении маятника) с наибольшей тщательностью. Определяют время 40 - 60 колебаний маятника не менее трех раз, откуда вычисляют средние значения периодов колебаний и погрешности их измерений.

7. Для определения положения центра тяжести маятника его тщательно уравновешивают на трехгранной подставке. Измерение расстояний l1 и l2 производят масштабной линейкой с точностью до миллиметра.

8. По полученным данным с помощью формулы Бесселя (9.5) определяют величину ускорения свободного падения.

9. Относительная погрешность измерения ускорения свободного падения определяется по формуле

 , (9.5)

где величина DТ полная погрешность измерения одного из периодов.


Информация о работе «Кинематика и динамика поступательного движения»
Раздел: Физика
Количество знаков с пробелами: 136506
Количество таблиц: 5
Количество изображений: 32

Похожие работы

Скачать
67410
17
19

... самопроизвольно протекать не может, необходим подвод энергии извне. 2-й закон термодинамики с использованием понятия энтропии формулируется так: Все процессы в природе протекают в направлении увеличения энтропии, энтропия замкнутой системы не может самопроизвольно уменьшаться. В статистической физике энтропию связывают с термодинамической вероятностью состояния системы – с числом ...

Скачать
121629
26
25

... в 2 раза. 180. Найти относительную скорость движения двух частиц, движущихся навстречу друг другу со скоростями u1 = 0,6×c и u2 = 0,9×c. II. ОСНОВЫ МОЛЕКУЛЯРНОЙ ФИЗИКИ И ТЕРМОДИНАМИКИ Молекулярная физика и термодинамика – разделы физики, в которых изучаются макроскопические процессы в телах, связанные с огромным числом содержащихся в них атомов и молекул (макроскопические системы ...

Скачать
68032
2
4

... условий взаимной уравновешенности системы сил является одной из основных задач статики. На основе изложенной в первой главе курсовой работы алгоритм конструкции языка программирования Паскаль составим и решим ряд задач по прикладной механике. Сформулируем задачу по статике первому разделу прикладной механики. Задача. Найти центр тяжести тонкого круглого однородного стержня изогнутого по дуге ...

Скачать
26011
13
22

... тела - найти характеристики движения самого тела и отдельных его точек. В данном задании к таким характеристикам относятся векторы угловой скорости и углового ускорения тела. Рис. 1 Основные формулы кинематики плоского движения твердого тела - векторные формулы, связывающие соответственно скорости и ускорения двух произвольных точек плоской фигуры, например, точек А и В (рис. 1) B = A ...

0 комментариев


Наверх