Микрокалькулятор

Кинематика и динамика поступательного движения
Погрешности результатов измерений Статистический анализ случайных погрешностей Абсолютная погрешность суммы и разности равна квадратичной сумме абсолютных погрешностей Микрокалькулятор Проверяют вертикальность установки машины Атвуда. Балансируют грузы По угловому коэффициенту полученной прямой определяют значение приложенной силы и сравнивают ее с реально действующей в системе Определить по графику все значения момента силы трения и найти его среднее значение. Сравнить полученный результат с ранее измеренным в задании 1 Анализируют вклад погрешностей измерений всех величин в общую погрешность и указывают, какая из величин должна быть измерена с наибольшей точностью В выводе сравнивают измеренное и табличное значения ускорения свободного падения Для получения биений используют два одинаковых генератора ГЗ-33 В выводе сопоставляют измеренные и вычисленные значения скорости Если число колебаний N в первом и втором случаях одинаково, то формулы (13.14) и (13.15) можно записать через время и число колебаний На нижнем конце проволоки вблизи зажима белой краской наносят кольцевую метку
136506
знаков
5
таблиц
32
изображения

6. Микрокалькулятор

Основным назначением микрокалькулятора является быстрое и точное получение результатов арифметических вычислений. Поэтому отпадает необходимость в применении предварительного округления чисел.

Учитывая, что в лабораторных работах редко встречаются числа, имеющие больше четырех значащих цифр, точность до восьми цифр, получаемых на микрокалькуляторе, является излишней и маскирует существование инструментальной погрешности и по Для того чтобы избежать иллюзорного впечатления о высокой точности результата, полученного с помощью микрокалькулятора, нужно посредством правил подсчета значащих цифр округлить результат математических вычислений так, чтобы точность их соответствовала точности данных, полученных от измерения.


ИЗУЧЕНИЕ КИНЕМАТИКИ И ДИНАМИКИ ПОСТУПАТЕЛЬНОГО ДВИЖЕНИЯ НА МАШИНЕ АТВУДА

Цель работы

Экспериментальная проверка основных уравнений и законов поступательного движения тела на специально сконструированной для этого лабораторной установке – машине Атвуда.

Идея эксперимента

Несмотря на то, что основные уравнения кинематики и динамики прямолинейного движения имеют простую форму и не вызывают сомнения, экспериментальная проверка этих соотношений весьма сложна. Трудности возникают в основном по двум причинам. Во-первых, при достаточно больших скоростях движения тел необходимо с большой точностью измерять время их движения. Во-вторых, в любой системе движущихся тел действуют силы трения и сопротивления, которые трудно учесть с достаточной степенью точности.

Определим, например, время падения тела с высоты h = 1,0 м при g равным 9,8 м/с2:

 . (1.1)

Если при выполнении эксперимента по определению g по времени падения тела с указанной высоты допускается погрешность в измерении времени равная 0,01 с, т. е. возможно получение значений времени 0,46 с или 0,44 с, разброс результатов измерений получается недопустимо большим: g=9,4 – 10,3 м/с2. С целью уменьшения влияния точности измерения времени на результаты измерений можно, например, резко увеличить высоту падения. Но при падении с больших высот достигаются большие скорости движения, что приводит к резкому увеличению сопротивления воздуха, которое трудно учесть.

Трудности рассмотренного опыта связаны с большим значением ускорения свободного падения. Так как ускорение большое, то тело быстро набирает скорость, а при этом или время падения мало и его трудно точно измерить, или сама расчетная формула неточна, т. к. не учитывает трение.

Уменьшить ускорение и одновременно максимально уменьшить силу сопротивления можно с помощью устройства, которое называют машиной Атвуда.

Экспериментальная установка

Машина Атвуда (рис. 3) состоит из легкого блока Б, через который переброшена нить с двумя равными грузами на концах (масса обоих грузов одинакова и равна m). Грузы могут двигаться вдоль вертикальной рейки со шкалой Ш. Если на правый груз положить небольшой перегрузок, грузы начнут двигаться с некоторым ускорением. Кольцевая полочка П1, которая может закрепляться в любом положении, предназначена для свободного прохода груза и для снятия перегрузка. Для приема падающего груза служит полочка П2.

Время движения грузов может измеряться с помощью ручного или стационарного се-кундомера. Машина Атвуда может быть электрифицирована, т. е. снабжена электромагнитной муфтой-пускателем и автоматическим секундомером. Трение в машине Атвуда сведено к минимуму, но для возможно полной компенсации сил трения масса правого груза делается немного больше массы левого (с помощью дроби или пластилина). Операция балансировки, выполняется с таким расчетом, чтобы грузы не перевешивали друг друга, но от легкого толчка вниз правого груза вся система приходила в равномерное движение. (При расчетах можно считать массы грузов одинаковыми).

Для выполнения работы машина Атвуда должна быть установлена строго вертикально, что легко проверить по параллельности шкалы и нити. Кроме того, в тех опытах, где используется кольцевая полочка, положение ее должно быть отрегулировано так, чтобы грузы проходили через кольцо не касаясь его, а перегрузок легко снимался и оставался на полочке.

Теория

Второй закон Ньютона для каждого из тел системы в предположении невесомости блока и отсутствия трения дает

 , (1.2)

где Т1,2 – силы натяжения нити, m – масса каждого груза, Dm – масса перегрузка, а – ускорение системы.

В проекциях на вертикальную ось ОY получаем соотношения

 (1.3)

Отсюда, так как Т1 = Т2, ускорение движения системы равно

 . (1.4)

Из этого выражения видно, во-первых, что ускорение не зависит от времени, что доказывает равноускоренный характер движения грузов. Во-вторых, видно, что изменять ускорение можно, меняя массу перегрузка Dm.

В случае равноускоренного движения скорость грузов v и их перемещение DS за время t определяются уравнениями

. (1.5)

Так как начальная скорость в опытах на машине Атвуда обычно равна нулю и движение условно начинается из начала координат, то

 . (1.6)

Будем называть первое из этих соотношений законом скоростей, а второе законом пе-

ремещений.

Соотношения (1.6) могут быть проверены экспериментально.

Проведение эксперимента

Задание 1. Проверка закона скоростей

Измерения


Информация о работе «Кинематика и динамика поступательного движения»
Раздел: Физика
Количество знаков с пробелами: 136506
Количество таблиц: 5
Количество изображений: 32

Похожие работы

Скачать
67410
17
19

... самопроизвольно протекать не может, необходим подвод энергии извне. 2-й закон термодинамики с использованием понятия энтропии формулируется так: Все процессы в природе протекают в направлении увеличения энтропии, энтропия замкнутой системы не может самопроизвольно уменьшаться. В статистической физике энтропию связывают с термодинамической вероятностью состояния системы – с числом ...

Скачать
121629
26
25

... в 2 раза. 180. Найти относительную скорость движения двух частиц, движущихся навстречу друг другу со скоростями u1 = 0,6×c и u2 = 0,9×c. II. ОСНОВЫ МОЛЕКУЛЯРНОЙ ФИЗИКИ И ТЕРМОДИНАМИКИ Молекулярная физика и термодинамика – разделы физики, в которых изучаются макроскопические процессы в телах, связанные с огромным числом содержащихся в них атомов и молекул (макроскопические системы ...

Скачать
68032
2
4

... условий взаимной уравновешенности системы сил является одной из основных задач статики. На основе изложенной в первой главе курсовой работы алгоритм конструкции языка программирования Паскаль составим и решим ряд задач по прикладной механике. Сформулируем задачу по статике первому разделу прикладной механики. Задача. Найти центр тяжести тонкого круглого однородного стержня изогнутого по дуге ...

Скачать
26011
13
22

... тела - найти характеристики движения самого тела и отдельных его точек. В данном задании к таким характеристикам относятся векторы угловой скорости и углового ускорения тела. Рис. 1 Основные формулы кинематики плоского движения твердого тела - векторные формулы, связывающие соответственно скорости и ускорения двух произвольных точек плоской фигуры, например, точек А и В (рис. 1) B = A ...

0 комментариев


Наверх