4. Аналогично из (61.6)
. (61.8)
5. Условие нормировки для плотности вероятности также следует из соотношения (61.6):
. (61.9)
6. Пусть - область - мерного пространства, тогда - вероятность того, что - мерный случайный вектор принимает значение из области , определяется через плотность :
. (61.10)
Доказательство этого соотношения следует из (61.6) с учетом того, что любая область может быть покрыта - мерными параллелепипедами при условии, что - наибольшая сторона параллелепипеда стремится к нулю.
7. Для любого
. (61.11)
Это равенство называется свойством согласованности плотности: из плотности вероятности порядка путем интегрирования по «лишнему» аргументу может быть получена плотность вероятности порядка . Для доказательства представим обе части равенства (60.5) через плотности, используя (61.8), тогда (60.5) принимает вид:
. (61.12)
Продифференцируем обе части этого равенства по аргументам , что приводит к выражению (61.11).
Случайный вектор называется нормально распределенным, если его плотность вероятности
, (62.1)
где ; - ковариационная матрица вектора , элемент которой является ковариацией случайных величин ; - определитель матрицы ; - матрица, обратная ковариационной.
Рассмотрим плотность вероятности в частном случае попарно некоррелированных случайных величин , для которых выполняется условие
, (62.2)
где - символ Кронекера. Таким образом, ковариационная матрица является диагональной, поскольку ее элементы (62.2) на главной диагонали – ненулевые, а вне главной диагонали - нулевые. Следовательно, определитель
. (62.3)
Элемент матрицы , обратной ковариационной можно найти по известной формуле:
, (62.4)
где - алгебраическое дополнение элемента матрицы . Из (62.3) следует
, (62.5)
а также при . Подстановка этих результатов в (62.4) приводит к выражению
. (62.6)
Подставим (62.3), (62.6) в (62.1), тогда
, (62.7)
где - плотность вероятности случайной величины . Таким образом, для гауссова случайного вектора из условия попарной некоррелированности его компонент , , следует условие (62.7) - независимости компонент случайного вектора.
Характеристическая функция случайного вектора63.1 Функция переменных
(63.1)
называется характеристической функцией случайного вектора .
Если случайный вектор является непрерывным, то его характеристическая функция (63.1) определяется через его плотность :
. (63.2)
Это соотношение является - мерным преобразованием Фурье от функции . Поэтому плотность можно выразить через характеристическую функцию в виде обратного преобразования Фурье по отношению к (63.2):
. (63.3)
... математического ожидания. Таким образом, (72.6) принимает вид . (72.7) 72.2. Функции вида , (72.8) где целые числа , называются начальными моментами порядка случайного процесса . Аналогично центральные моменты определяются соотношениями: . (72.9) Для функций (72.8), (72.9) используется общее название - моментные функции. Наиболее простые ...
... damn(t)/dt =[daij(t)/dt] 1.3 ПОНЯТИЕ ДИНАМЧЕСКОГО ОБЬЕКТА. Физический объект - физическое устройство, характеризуемое некоторым числом свойств, соответствующих целям его использования. В теории систем существенным является не физическое, а математическое описание свойств объекта и соотношений между ними. В теории систем объектом А является абстрактный объект, связанный с множеством ...
... проверить знания студента из первой части курса, которая излагается в первых четырёх модулях. Во вторых вопросах билета проверяются знания классической предельной проблемы теории вероятностей и математической статистики, которые излагаются в следующих пяти модулях. 1. Вероятностная модель с не более чем счётным числом элементарных исходов. Пример: испытания с равновозможными исходами. 2. ...
... несколько уравнений, а в каждом уравнении - несколько переменных. Задача оценивания параметров такой разветвленной модели решается с помощью сложных и причудливых методов. Однако все они имеют одну и ту же теоретическую основу. Поэтому для получения начального представления о содержании эконометрических методов мы ограничимся в последующих параграфах рассмотрением простой линейной регрессии. ...
0 комментариев