11. Контроль качества продукции

В связи с переходом промышленности на массовое изготовление изделий, резко увеличился интерес к проверке качества изделий, входящих в принимаемую партию. Появилась глубокая по содержанию и значительная по своим практическим применениям теория статистических методов приемочного контроля, основанная на широком использовании теории вероятностей.

Первым шагом, относящимся к этому кругу идей, следует считать одну из задач, рассмотренных Т. Симпсоном в книге «Природа и законы случая» (1740 г.). Имеется данное число вещей различного сорта  вещей первого,  второго и т.д. Наудачу дерутся  вещей. Найти вероятность того, что при этом будет взято  вещей первого сорта,  второго и т.д.

Спустя сто с небольшим лет, к этой задаче вновь вернулся М.В. Остроградский (1801–1862) в работе «Об одном вопросе, касающемся вероятностей» (1846). Он вычислил необходимые для практического применения таблицы. Приведем подлинные слова Остроградского. «В сосуде имеются белые и черные шары, общее количество которых нам известно, но мы не знаем, сколько из них какого цвета. Мы извлекаем некоторое количество шаров, подсчитав, сколько из них белых и сколько черных, снова кладем в сосуд. Требуется определить вероятность того, что общее число белых не выходит из наперед заданных пределов. Или, лучше сказать, мы ищем зависимость между этой вероятностью и пределами, о которых идет речь.

Чтобы понять важность этого вопроса, представим себя на месте того, кто должен получить большое число предметов, причем должны выполняться некоторые условия, и кто, чтобы проверить эти условия, должен на каждый предмет потратить некоторое время. Перед армейскими поставщиками часто стоят такого рода задачи. Для них шары, содержащиеся в сосуде, представляют получаемые предметы, белые, например предметы приемлемые, как удовлетворяющие определенным условиям, а черные неприемлемые.

Таким образом, если бы вопрос, который мы перед собой поставили, был решен, поставщик мог бы воспользоваться этим, чтобы свести приблизительно к двадцатой доле часто очень утомительную механическую работу, как, например, проверку большого количества мешков муки или штук сукна».

Общее число шаров в урне известно, но неизвестен ее состав. Его и следует оценить при выборке, взятой из урны наудачу. Для этой цели Остроградский использует формулы Байеса.

Статистические методы приемочного контроля получили особенно бурное развитие в годы Второй мировой войны, поскольку было необходимо принимать огромные партии однородной продукции, а проверять ее сплошь не было возможностей по ряду причин. Нет возможности здесь перечислить даже основные этапы развития теории статистических методов приемочного контроля. Большое число исследователей работали над различными проблемами этой тематики и внесли в ее развитие крупный вклад. Из отечественных ученых заслуживают быть отмеченными А.Н. Колмогоров, В.И. Романовский, С.Х. Сираждинов, Ю.К. Беляев и др.

12. Развитие теории ошибок наблюдений

Уже упоминалось, что Галилей заложил основы теории ошибок измерений и ввел в рассмотрение ряд важных понятий, которые сохранили значение и в наши дни.

Позднее под влиянием в первую очередь астрономических и геодезических наблюдений интерес к ошибкам измерений значительно возрос. Знаменитый астроном-наблюдатель Тихо Браге (1546–1601) обратил внимание на то, что каждое отдельное измерение несет в себе возможную ошибку и точность измерений значительно повышается, если произвести несколько измерений и взять из них среднее арифметическое.

Казалось бы, от И. Кеплера (1571–1630), сделавшего так много для формирования законов движения планет, следовало ожидать повышенного внимания к методам обработки результатов наблюдений. Но эти вопросы фактически остались в стороне от его интересов, и он заметил только то, что хороший наблюдатель производит измерения с ошибками ограниченной величины.

Первые попытки построить математическую теорию ошибок измерений принадлежат Р. Котсу (1682–1716), Т. Симпсону (1710–1761) и Д. Бернулли (1700–1782).

Позднее теория ошибок измерений привлекла внимание практически всех видных специалистов в области теории вероятностей. Она оказала серьезное влияние на постановку задач и разработку методов математической статистики.

13. Формирование понятия случайной величины

Ведение понятия случайной величины связано с именами многих ученых, которые хотя и не использовали этого термина, но фактически исследовали отдельные его свойства.

Начиная с Котса, Симпсона и Н. Бернулли в 18-ом веке начала развиваться теория ошибок наблюдений, возникшая в первую очередь под влиянием астрономии. Ошибка измерения в зависимости от случая может принимать различные значения. Эта позиция была высказана Галилеем задолго до работ упомянутых ученых. Он же ввел в обиход термин «случайная» и «систематическая ошибка» измерения. Вторая тесно связана с качеством изготовления прибора, мастерством наблюдателя, условиями наблюдения. Первая же зависит от многочисленных причин, влияние которых невозможно учесть и которые изменяются от наблюдения к наблюдению. Теперь мы ясно видим, что ошибка измерения представляет собой случайную величину с каким-то неизвестным нам распределением вероятностей.

Но с понятием случайной величины встречались уже Я. Бернулли, Н. Бернулли, Монмор, Муавр. В самом деле, Я. Бернулли рассмотрел число появлений интересующего его события в  независимых испытаниях. Для нас теперь это случайная величина, способная принимать значения  с вероятностями, задаваемыми формулами Бернулли. Н. Бернулли, Монмор и Муавр, исследуя задачу о разорении игрока, также имели дело со случайной величиной: числом партий, которые необходимы для разорения. Муавр пошел еще дальше, он ввел в рассмотрение нормальное распределение вероятностей. Однако никто из перечисленных ученых не заметил, что в науку властно постучалась необходимость введения нового понятия случайной величины.

Первоначально считалось, что возможные значения ошибок измерений составляют арифметическую прогрессию с неопределенной, но очень малой разностью. Затем постепенно от этого предположения отказались и стали представлять себе, что возможные значения, принимаемые ошибками наблюдений, заполняют целый отрезок, вероятности возможных значений определялись посредством плотности распределения. И если Д. Бернулли в отношении плотности распределения вероятностей допускал еще определенные вольности, то у Лапласа, Гаусса, Лежандра с плотностью распределения уже было все в порядке. Это была неотрицательная функция, интеграл которой по всей прямой равен 1, а вероятность попадания в тот или иной отрезок равнялся интегралу от плотности, взятому по этому отрезку. Лапласу уже была известна формула для разыскания плотности распределения суммы по плотностям распределения слагаемых. В книге «Аналитическая теория вероятностей» Лаплас умело оперирует с плотностями распределения, ставит и решает ряд интересных задач, но нигде не вводит понятия случайной величины. Он либо использует язык теории ошибок измерений, либо язык математического анализа и не ощущает потребности в новом понятии теории вероятностей.

Первая половина 19-го века принесла новые задачи, которые нуждаются в понятии случайной величины. Прежде всего, это исследования бельгийского естествоиспытателя А. Кетле (1796–1874), заметившего, что размеры органов животных определенного возраста подчиняются нормальному распределению. Изучение уклонений снаряда от цели явилось предметом исследования многих ученых; они также пришли к выводу о нормальном распределении этой величины.

Многочисленные исследования многих крупных математиков подготовили почву для введения понятия случайной величины. По-видимому, первый шаг был сделан Пуассоном в мемуаре 1832 г. «О вероятности средних результатов наблюдений». Термина случайная величина у Пуассона еще нет, но он пишет о «некоторой вещи», которая способна принять значения  соответственно с вероятностями . Он рассмотрел также непрерывные случайные величины и их плотности распределения.

Итак, Пуассоном был сделан важный шаг в науке, он ввел в научный обиход новое понятие – случайную величину. Его первоначальный термин «вещь» не привился и вскоре перестал употребляться. Чебышев в своих мемуарах по теории вероятностей уже использует термин «величина» и автоматически считает все случайные величины, с которыми имеет дело, независимыми. В работе же Ляпунова по теории вероятностей систематически используется термин «случайная величина» и всюду, где это необходимо, оговаривается, что автор имеет дело с независимыми случайными величинами.

Определение случайной величины, данное Пуассоном, теперь уже не может считаться математическим. Это скорее описание реального объекта изучения, обращение к интуиции, полученной в результате научного и житейского опыта. Даже несложный логический анализ этого определения показывает, что из него совсем не следуют правила для действий над случайными величинами. Для того, чтобы случайная величина приобрела статус полноценного математического понятия, ей необходимо дать строго формализованное определение. Это было сделано в конце 20-х годов А.Н. Колмогоровым в небольшой статье, посвященной аксиоматике теории вероятностей, а затем в подробностях изложено в его знаменитой книге «Основные понятия теории вероятностей». Подход Колмогорова стал теперь общепринятым, поскольку он полноценно включил теорию вероятностей в общий стиль современного изложения, принятый в математике.



Информация о работе «Теория вероятностей. От Паскаля до Колмогорова»
Раздел: Математика
Количество знаков с пробелами: 66594
Количество таблиц: 1
Количество изображений: 0

Похожие работы

Скачать
66135
2
3

... понятия вероятности задача некоторой несостоятельности классического определения вероятности была решена. Однако наблюдаются попытки дать трактовку вероятности с более широких позиций, в том числе и с позиций теории информации. 2. Динамика развития понятия математического ожидания   2.1 Предпосылки введения понятия математического ожидания Одним из первых приблизился к определению понятия ...

Скачать
53712
10
2

... монету второй раз не бросают), в четвертом — второму. Шансы игроков на выигрыш относятся как 3 к 1. В этом отношении и надо разделить ставку. Глава II. Элементы теории вероятностей и статистики на уроках математики в начальной школе (методика работы) Первый шаг на пути ознакомления младших школьников с миром вероятности состоит в длительном экспериментировании. Эксперимент повторяют много раз при ...

Скачать
98993
10
0

... вероятностей совместимых событий; формулы: полной вероятности, Бейеса (Байеса). Одной из форм дифференцированного обучения по курсу теории вероятностей может являться факультативный курс. 2. Разработка программы факультативного курса по теории вероятностей в курсе математики 8 класса   2.1 Основные понятия о факультативном курсе Возможность 1-2 часа в неделю дополнительно работать со ...

Скачать
25559
0
0

... равна 0,515). Конец 19 в. и 1-я половина 20 в. отмечены открытием большого числа статистических закономерностей в физике, химии, биологии и т.п. Возможность применения методов теории вероятностей к изучению статистических закономерностей, относящихся к весьма далёким друг от друга областям науки, основана на том, что вероятности событий всегда удовлетворяют некоторым простым соотношениям, о ...

0 комментариев


Наверх