1.1 Сеточная область
Для построения разностной схемы необходимо построить сетку Gh-конечное множество точек, принадлежащих G, плотность распределения которых характеризуется параметрами h-шагом сетки. Пусть область изменения аргумента x есть отрезок G={0≤x≤1}. Разобьем этот отрезок точками xi=i∙h, i=0,n на n равных частей длины h=1/n каждая. Множество точек xi=i∙h, называется равномерной сеткой на отрезке 0≤x≤1 и обозначим ={xi=i∙h, i=0,n} , а число h-расстояние между точками (узлами) сетки называется шагом сетки. Разбиение отрезка 0≤x≤1 точками xi, i=0,n можно производить произвольным образом - 0<x1<…<xn-1<1. Тогда получаем сетку ={xi, i=0,n, x0=0, xn=1} c шагами hi=xi-xi-1, которое зависит от номера узла сетки. Если hi≠hi+1 хотя бы в одной точке, то сетка называется неравномерной и такую сетку обозначают ŵ. Точки x0 и xn назовем граничными узлами и обозначим их гh. Остальные узлы назовем внутренними и обозначим их wh. Узлы соседние с граничащими назовем приграничными. Тогда имеем
=whгh.
1.2 Сеточная функция. Пространство сеточных функций. Нормы сеточных функций
Функция y=y(xi) дискретного аргумента xiназывается сеточной функцией, определенной на сетке . Сеточные функции можно рассматривать как функции целочисленного аргумента, являющегося номером узла сетки, т. е. y=y(xi)=y(i). Далее мы будем писать y(xi)=yi.
Сеточная область wh зависит от параметра h. При различных значениях параметра h имеем различные сеточные области. Поэтому и сеточные функции yh(x) зависят от параметра h.
Функции u(x) непрерывного аргумента являются элементами функционального пространства H. Множество сеточных функций yh(x) образует пространство Hh. Таким образом, в методе сеток пространство H, заменяется пространством Hh сеточных функций yh(x).
Так как рассматривается множество сеток {wh}, то мы получаем множество {Hh} пространств сеточных функций, определенных на {wh}.
Пусть u(x) - решение исходной непрерывной задачи
Lu(x)=f(x), (1)
; yh- решение разностной задачи, . Для теории приближенных вычислений представляет большой интерес оценка близости u(x) и yh(x), но u(x) и yh(x) являются элементами из различных пространств. Пространство H отображается на пространство Hh. Каждой функции ставится в соответствие сеточная функция yh(x), x wh, так что yh=Phu Hh, где Ph- линейный оператор из H в Hh. Это соответствие можно осуществить различными способами, т. е. зависит от выбора оператора Ph. Теперь, имея сеточную функцию uh, образуем разность yh-uh, которая является вектором пространства Hh. Близость yh и uh характеризуется числом yh-uhHh , где Hh – норма на Hh.
Соответствие функций u(x) и uh можно установить различными способами, например,
uh=u(x), x wh.
В дальнейшем мы будем пользоваться этим способом соответствия.
В линейном пространстве Hh введем норму Hh, которая является аналогом нормы Н в исходном пространстве Н. Обычно принято выбирать норму в пространстве Hh так, чтобы при стремлении к нулю h она переходила в ту или иную норму функций, заданных на всем отрезке, т.е. чтобы выполнялось условие
Hh=H, (2)
где Н- норма в пространстве функций, определенных на отрезке, которому принадлежит решение.
Условие (2) называют условием согласования в пространствах Hh и Н.
Рассмотрим простейшие типы норм в Hh для случая сеток
wh={xi=i∙h} на отрезке 0≤x≤1.
1. Норма Hh=
удовлетворяет условию (2), если в качестве Н рассматривать пространство непрерывных функций с нормой
H=, H=[a,b],
а сеточную функцию определять в виде (2), т.е.
yh(x)=uh(x), x wh
2. Норма Hh=
удовлетворяют условию (2), если за Н принять пространство непрерывных функций с нормой
H=u2(x)dx, H=C[a,b] ,
а сеточную функцию определять в виде
yh=uh(x), x wh.
... на первой и последующих итерациях равна: ; (3.22) . (3.23) Критерием завершения итерационного процесса является условие: ,(3.24) где - заданная точность расчета [4]. 4. Методы оценки термонапряженного состояния 4.1 Физические основы возникновения термических напряжений При изменении температуры происходит объемное расширение или сжатие твердого тела. Неравномерный нагрев ...
... диаметрах критического сечения представлены на рисунке 2.24 Рисунок 2.24 - Зависимость оптимальной высоты поднятия фурмы от давления при различных диаметрах критического сечения сопла Лаваля 3. Численное исследование движения жидкости Приведены уравнения Навье - Стокса установившегося осесимметричного движения несжимаемой вязкой жидкости в переменных функция тока - вихрь. Проведено ...
... системы на ЭВМ, а так же требование его экономичности обуславливают применение регулярных сеток, расположение узлов в которых подчиняется определённым закономерностям. В практике численного моделирования микроэлектронных структур примеяются как непрерывные прямоугольные (неравномерные), так и треугольные сетки (рис.2.). Треугольная сетка позволяет с меньшим количеством дополнительных узлов сгущать ...
... . Реакции узлов более высокого уровня менее зависят от позиции и более устойчивы к искажениям. Структура Неокогнитрон имеет иерархическую структуру, ориентированную на моделирование зрительной системы человека. Он состоит из последовательности обрабатывающих слоев, организованных в иерархическую структуру (рис. 10.8). Входной образ подается на первый слой и передается через плоскости, ...
0 комментариев