2.3 Неявные схемы

В отличие от явной схемы неявные схемы используются для задачи (1) – (3) во всех случаях 1) p0>0, pN>0; 2) p0<0, pN<0; 3) p0>0, pN<0; 4) p0<0, pN>0.

Рассмотрим 2 различные разностные схемы:

1)    Центрально- разностная схема.

2)    Трехточечная схема с весом.

Все эти схемы решаются методом прогонки и все эти разностные уравнения, т.е. полученные при аппроксимации схемы, вернее, уравнения сводятся к виду:

  (4)

Коэффициенты Ai, Bi, Ciдолжны удовлетворять условиям:

 (5)

Коэффициенты B0 , C0 , F0, AN ,CN ,FN находятся из граничных условий. В данной задаче в зависимости от знака функции p(x,t) ставятся граничные условия и тем самым находятся наши коэффициенты. Рассмотрим все 4 случая:

1) p0>0, pN>0, u(l,t)=м2(t), (3′)

из уравнения (3′)  AN ,CN ,FN .

B0 , C0 , F0 находятся из дополнительного условия, которая ставится на левом конце.

2) p0<0, pN<0, u(0,t)=м1(t), (3″) из уравнения (3″)  B0 , C0 , F0.

AN ,CN ,FN находятся из дополнительного условия, которая ставится на правом конце.

3) p0<0, pN>0, u(0,t)=м1(t), u(l,t)=м2(t), (3″′)

из уравненя (3″′)  B0 , C0 , F0

 AN ,CN ,FN

 

4) p0>0, pN<0, нет граничных условий.

Дополнительное условие ставится на левом и на правом концах. Находим B0, C0 , F0 , AN ,CN ,FN .

Алгоритм правой прогонки

 , .

,

.

При выполнении условий  алгоритм правой прогонки устойчив.

2.3.1 Центрально разностная схема

Разностная схема имеет вид (задачи (1)-(3)):


, .

 

1) P0>0, PN>0

 , , .

 

2) P0<0, PN<0

    .


3) P0<0, PN>0

 B0=0, C0=1, F0=,

→ AN=0, CN=1, .

 

4) P0>0, PN<0

 ,

  

Таблица 3. Численное решение уравнения переноса с переменными коэффициентами центральная разностная схема метод прогонки

-------------kogda p0>0, pN>0------------ 50sloy
N priblijennoe tochnoe pogreshnosti
0 0.18772094 0.18765555 0.00006539
1 0.18147920 0.18150347 0.00002427
2 0.17566576 0.17555308 0.00011268
3 0.16982701 0.16979776 0.00002924
4 0.16440069 0.16423113 0.00016956
5 0.15890974 0.15884699 0.00006275
6 0.15384782 0.15363937 0.00020845
7 0.14868453 0.14860247 0.00008206
8 0.14391438 0.14373070 0.00018368
9 0.13904086 0.13901865 0.00002221
10 0.13462315 0.13446108 0.00016208
11 0.13004378 0.13005292 0.00000914
12 0.12593278 0.12578928 0.00014351
13 0.12169429 0.12166541 0.00002888
14 0.11786577 0.11767675 0.00018903
15 0.11381884 0.11381884 0.00000000

Таблица 4. Численное решение уравнения переноса с переменными коэффициентами центральная разностная схема метод прогонки

-------------kogda p0<0, pN<0-------------- 50sloy
N priblijennoe tochnoe pogreshnosti
0 0.14715178 0.14715178 0.00000000
1 0.14240331 0.14232757 0.00007574
2 0.13769681 0.13766151 0.00003530
3 0.13325746 0.13314843 0.00010903
4 0.12885248 0.12878331 0.00006918
5 0.12470227 0.12456129 0.00014098
6 0.12057943 0.12047768 0.00010174
7 0.11669966 0.11652796 0.00017170
8 0.11284082 0.11270772 0.00013310
9 0.10921401 0.10901272 0.00020130
10 0.10560221 0.10543886 0.00016335
11 0.10221201 0.10198216 0.00022985
12 0.09883137 0.09863879 0.00019259
13 0.09566248 0.09540502 0.00025746
14 0.09249816 0.09227727 0.00022089
15 0.08953626 0.08925206 0.00028420

Таблица 5. Численное решение уравнения переноса с переменными коэффициентами центральная разностная схема метод прогонки

-------------kogda p0<0, pN>0--------------50sloy
N priblijennoe tochnoe pogreshnosti
0 0.03678794 0.03678794 0.00000000
1 0.03565917 0.03558189 0.00007728
2 0.03439784 0.03441538 0.00001754
3 0.03335557 0.03328711 0.00006846
4 0.03216179 0.03219583 0.00003404
5 0.03119895 0.03114032 0.00005863
6 0.03007027 0.03011942 0.00004915
7 0.02917987 0.02913199 0.00004788
8 0.02811435 0.02817693 0.00006258
9 0.02728957 0.02725318 0.00003639
10 0.02628567 0.02635971 0.00007405
11 0.02551993 0.02549554 0.00002439
12 0.02457633 0.02465970 0.00008337
13 0.02386341 0.02385126 0.00001215
14 0.02297890 0.02306932 0.00009042
15 0.02231302 0.02231302 0.00000000

Таблица 6. Численное решение уравнения переноса с переменными коэффициентами центральная разностная схема метод прогонки

-------------kogda p0>0, pN<0--------------50sloy
N priblijennoe tochnoe pogreshnosti
0 0.00379722 0.00375311 0.00004410
1 0.00328998 0.00328462 0.00000536
2 0.00291427 0.00287461 0.00003966
3 0.00250378 0.00251579 0.00001200
4 0.00225176 0.00220175 0.00005001
5 0.00190450 0.00192691 0.00002241
6 0.00172045 0.00168638 0.00003407
7 0.00145947 0.00147588 0.00001640
8 0.00129005 0.00129165 0.00000159
9 0.00109247 0.00113042 0.00003795
10 0.00092289 0.00098931 0.00006642
11 0.00074314 0.00086582 0.00012268
12 0.00056520 0.00075774 0.00019254
13 0.00038370 0.00066315 0.00027946
14 0.00020306 0.00058037 0.00037731
15 0.00002275 0.00050793 0.00048518

Текст программы смотри в приложении 2

 


Информация о работе «Разностные схемы для уравнения переноса на неравномерных сетках»
Раздел: Информатика, программирование
Количество знаков с пробелами: 74851
Количество таблиц: 18
Количество изображений: 9

Похожие работы

Скачать
59485
4
20

... на первой  и последующих  итерациях равна: ; (3.22) . (3.23) Критерием завершения итерационного процесса является условие: ,(3.24) где  - заданная точность расчета [4]. 4. Методы оценки термонапряженного состояния 4.1 Физические основы возникновения термических напряжений При изменении температуры происходит объемное расширение или сжатие твердого тела. Неравномерный нагрев ...

Скачать
36871
3
34

... диаметрах критического сечения представлены на рисунке 2.24 Рисунок 2.24 - Зависимость оптимальной высоты поднятия фурмы от давления при различных диаметрах критического сечения сопла Лаваля 3. Численное исследование движения жидкости Приведены уравнения Навье - Стокса установившегося осесимметричного движения несжимаемой вязкой жидкости в переменных функция тока - вихрь. Проведено ...

Скачать
11306
2
0

... системы на ЭВМ, а так же требование его экономичности обуславливают применение регулярных сеток, расположение узлов в которых подчиняется определённым закономерностям. В практике численного моделирования микроэлектронных структур примеяются как непрерывные прямоугольные (неравномерные), так и треугольные сетки (рис.2.). Треугольная сетка позволяет с меньшим количеством дополнительных узлов сгущать ...

Скачать
243425
1
0

... . Реакции узлов более высокого уровня менее зависят от позиции и более устойчивы к искажениям. Структура Неокогнитрон имеет иерархическую структуру, ориен­тированную на моделирование зрительной системы челове­ка. Он состоит из последовательности обрабатывающих слоев, организованных в иерархическую структуру (рис. 10.8). Входной образ подается на первый слой и передается через плоскости, ...

0 комментариев


Наверх