3. Расчет и конструирование открытой клиноременной передачи
3.1 Проектный расчет клиноременной передачи
Данные, необходимые при расчете:
– передаточное число ременной передачи;
– номинальная мощность двигателя.
1. По номограмме выбираем нормальное сечение ремня А, так как , .
2. Определяем минимально допустимый диаметр ведущего шкива , так как .
3. В целях повышения срока службы ремней применим ведущий шкив с расчетным диаметром на порядок выше, чем .
4. Определяем диаметр ведомого шкива:
,
где – коэффициент скольжения.
Полученное значение округляем до ближайшего стандартного: .
5. Определяем фактическое передаточное число и проверяем его отклонение от заданного :
.
.
6. Определим ориентировочное межосевое расстояние:
,
где – высота сечения для клинового ремня нормального сечения А.
7. Находим расчетную длину ремня:
Предварительный расчет показал, что для обеспечения угла обхвата ремнем ведущего шкива необходимо взять , а не , которое, которое ближе к полученному значению .
8. Уточним значение межосевого расстояния по стандартной длине:
.
9. Определяем угол обхвата ремнем ведущего шкива:
,
при этом выполнено условие .
10. Находим скорость ремня:
,
где – частота вращения ведущего шкива,
– допускаемая скорость ремня;
11. Определяем частоту пробегов ремня:
,
где – допускаемая частота пробегов ремня.
12. В зависимости от типа ремня, его сечения, скорости , м/с, и диаметра ведущего шкива , мм, выбираем интерполированием (А.Е. Шейнблит «Курсовое проектирование деталей машин», таблица 5.5, стр. 89) допускаемую приведенную мощность, передаваемую одним клиновым ремнем:.
Для дальнейших расчетов выбираем поправочные коэффициенты:
– коэффициент динамичности нагрузки и длительности работы (при нагрузке с умеренными колебаниями с учетом двухсменной работы);
– коэффициент угла обхвата на меньшем шкиве;
– коэффициент влияния отношения расчетной длины ремня к базовой , ;
– коэффициент числа ремней в комплексе клиноременной передачи (при ожидаемом числе ремней ).
Определяем допускаемую мощность, передаваемую одним клиновым ремнем:
13. Определяем количество клиновых ремней:
,
где – номинальная мощность двигателя;
– допускаемая мощность, передаваемая ремнями.
Принимаем число ремней .
14. Вычисляем силу предварительного натяжения одного клинового ремня:
15. Находим окружную силу, передаваемую комплектом клиновых ремней:
16. Определяем силы натяжения ведущей и ведомой ветвей одного клинового ремня:
,
.
17. Находим силу давления ремней на вал комплекса клиновых ремней:
.
3.2 Проверочный расчет клиноременной передачи
18. Проверим прочность одного клинового ремня по максимальным напряжениям в сечении ведущей ветви :
а) Находим напряжение растяжения в клиновом ремне:
,
где – площадь сечения ремня.
б) Находим напряжения изгиба в клиновом ремне:
,
где – модуль продольной упругости при изгибе для
прорезиненных ремней,
– высота сечения клинового ремня,
– диаметр ведущего шкива.
в) Находим напряжения от центробежных сил:
,
где – плотность материала клинового ремня.
Определяем максимальные растягивающие напряжения в сечении ремня:
,
где – допускаемое напряжения растяжения для клиновых ремней.
Таким образом, условие прочности выполнено.
Параметр | Значение | Параметр | Значение |
Тип ремня | Клиновой | Частота пробегов ремня | 3,55 |
Сечение ремня | А | Диаметр ведущего шкива , мм | 100 |
Количество ремней | 4 | Диаметр ведомого шкива, мм | 355 |
Межосевое расстояние, мм | 317 | Максимальное напряжение | 8,696 |
Длина ремня | 1400 | Предварительное натяжение | 130,52 |
Угол обхвата малого шкива | 134 | Сила давления ремня | 961,15 |
... конструкцию. Проект – это техническая документация, полученная в результате проектирования и конструирования. Цель работы: рассчитать спроектировать и сконструировать одноступенчатый горизонтальный цилиндрический редуктор с шевронным зубом и клиноременную передачу для привада шестеренного насоса. 1. ВЫБОР ЭЛЕКТРОДВИГАТЕЛЯ И КЕНЕМАТИЧЕСКИЙ РАСЧЕТ Определим общий КПД привода ...
... в часах: где n1 –частота вращения ведущего вала редуктора. Ведомый вал несёт такие же нагрузки, как и ведущий: Fa=...H; Fr=...H; Ft=...H. Нагрузка на вал от муфты Fм=...Н. Из первого этапа компоновки: L2=...м. L3=...м. Составляем расчётную схему вала: Реакции опор: Горизонтальная плоскость Проверка: Вертикальная плоскость: Проверка: ...
... напряжения σэкв = 1, 3 Fр / А (109) σэкв = 1, 3 *1780, 08 / 84, 2 = 27, 48 Н/мм2 [σ] 27, 48 75 Проверить прочность стяжных винтов подшипниковых узлов быстроходного вала цилиндрического редуктора. Rу – большая из реакций в вертикальной плоскости в опорах подшипников быстроходного вала, Rу = 2256, 08 Н. Диаметр винта d2 = 12 мм, шаг резьбы Р = 1, 75 мм. Класс прочности 5.6 ...
... линии заготовка устанавливается на конвейере, перемещающемся от одной обрабатывающей головки к другой. При обработке на автоматической линии установочной базой является поверхность 5. Технологический процесс изготовления крышки корпуса построен таким образом, что принцип постоянства баз выполняется. 2.6 Технологический маршрут и план изготовления детали При составлении технологического ...
0 комментариев