4.2 Первый этап эскизной компоновки

Первый этап эскизной компоновки выполняется с целью определения расстояний между сечениями валов, в которых приложена нагрузка, и сечениями, контактирующими с опорами.

Эскизную компоновку рекомендуется выполнять в масштабе 1:1 на миллиметровой бумаге. Достаточно сделать одну проекцию - разрез по плоскости, в которой лежат оси валов. Последовательность выполнения первого этапа изложена в работах [1 - 4].

4.3 Подбор и проверка шпонок

Для соединения вала с деталями, передающими кручение, часто используют призматические шпонки.

Рассмотрим пример. Пусть нужно установить шпонку на промежуточном вале под коническим колесом. Выбираем призматическую шпонку по диаметру dL1 = 70 мм по ГОСТ 23360-78 (рис. 1) [5,с. 20]. Размеры шпонки: ширина b=20мм, высота h = 12 мм, глубина паза вала t1 = 7,5 мм, глубина паза втулки t2=5,8 мм. Длину шпонки Lшп назначают из стандартного ряда таким образом, чтобы она была на 5 - 10 мм меньше длины ступицы колеса Lст, Lшп = L ст - (5 - 10). Длину ступицы принимают [5, ñ.30] в зависимости от диаметра d вала под ступицей: для цилиндрической передачи Lст = (1-1,5) · d; для конической передачи Lст = (1-1,2) · d.

Длина шпонки Lшп’ = Lст - (5 - 10) = 75 – 12 = 63 . Выбираем Lшп = 63. Шпонка 20 х 12 х 63 по ГОСТ 23360 – 78.

Напряжение смятия узких граней шпонки не должно превышать допускаемого

[s]см = 100 МПа, т.е.

s см = 2 · Т · 10 3 / d · Lp · (h – t1) £ [s] см

где Т - крутящий момент, передаваемый валом, Нм; d - диаметр вала в месте установки шпонки (в нашем примере d = d L 2 = 70 мм;

L р= Lшп - b = 70-20=50

sсм = 99,2 МПа £ [s] см

На промежучочном валу - шпонка 20x12x70 ГОСТ 23360-78.

4.4 Конструктивные размеры зубчатых колес

Размеры элементов зубчатых колес определяем по рекомендациям, приведенным в работах [1,3 - 5].

4.5 Силы в зубчатых прердачах

Для определения направлений сил в зубчатых передачах и угловых скоростей в данный момент времени следует воспользоваться показанным на рис. 2 направлением окружной скорости ленты (на кинематической схеме колеса условно раздвинуты). Привод реверсивный, в случае изменения направления вращения в конической передаче окружные усилия Ft1 и Ft2 и в цилиндрической передаче окружные усилия Ft3 и Ft4 и осевые усилия Fа3 и F а4 поменяют направления на противоположные.

4.6 Расчетные схемы валов

Опорные реакции, эпюры изгибающих и крутящих моментов.

4.6.1 Быстроходный вал

Определение расстояний между опорами.

Размер от dae1 до среднего диаметра шестерни


с1 = 0,5 · bw1 · cos s1 = 0,5 · 45 · cos 14° = 21,8 мм

Принимаем зазор между dae1 и торцом подшипника D1 = D + m, где m - расстояние от внутренней стенки корпуса до подшипника, m = 10 мм.

Рис. 2. Определение направления действующих сил.

Для подшипников быстроходного вала выбираем консистентную смазку вследствие значительной удаленности одного из подшипников от картера редуктора. Следовательно, этот подшипник не будет смазываться масляным туманом даже при высоких окружных скоростях. Поэтому рекомендуется на этом валу устанавливать мазеудерживающее кольцо и принимать

m = 10 мм.

D - расстояние между dae1 и внутренней стенкой корпуса;

L1= 44,95 мм – с компоновки

L = 100 – с компоновки

Подшипник 7212А d = 60 , D = 110, Т = 23,75, В = 22, L = 100


Точка приложения радиальной реакции в опорах расположена в средней плоскости подшипника и может быть определена по выражению

а = Тп /2 + е · (D + d) /6,

где Тп - ширина подшипника;

D - наружный диаметр подшипника;

d - диаметр вала под подшипником;

е - параметр осевого нагружения подшипника.

а = 20,375

Определяем размер Lп1.

Lп1 = L + 2 · (Тп - а1 ) = 89,63 мм

Определяем размер L1.

L1 = 45 мм

Определение составляющих опорных реакций и изгибающих моментов.

Рассмотрим плоскость YOZ. Составим уравнение равновесия суммы моментов относительно опор А и В вала:

Σ МAY = 0 Σ МBY = 0

Fr1 · (L1 + Ln1) - Fa1 · dm1 / 2 + RBy · Ln1 =0;

Fr1 · L1 - Fa1 · dm1 / 2 + RАy · Lп1 = 0;

Проверим правильность нахождения реакций RAY и RВY , для этого составим третье уравнение равновесия – сумму проекций всех сил на ось Y:

åY = 0; - RAY + RBY + Fr1 = -1739+209+1530=0

Построение эпюры изгибающих моментов.

Участок 1:

åМZ1 = 0; 0 · Z1 = МZ1

Участок 2:

åМZ2 = 0; RAY · Z2 = М2

0£ Z2 £ Ln1

Z2 = 0 МZ2 = 0.

Z2 = Ln1 åМZ2 = RAY · Ln1 = 1739 · 0,08963 = 156 H·м

Участок 3:

åМZ3 = 0; RAY · (Ln1 + Z3) = RBY · Z3 = МZ3

0£ Z3 £ L1

Z3 = 0 МZ3 = RAY · Ln1 = 1739 · 0,08963 = 156 H·м

Z3 = L1

åМZ3=RAY (Ln1+L1)-RBY·L1=1739(0,08963+0,045)-209·0,045=225Н·м

Рассмотрим плоскость XOZ.

Σ МAX = 0 Σ МBX = 0

RBx x Ln1 – Ft1 · (Ln1 + L1) = 0

RBХ x Ln1 – Ft1 · L1= 0

RBХ = Ft1 · (1 + L1/ Ln1) = 6581,4·(1+45/89,63)=9885,6 H

RАХ = Ft1 · L1 / Lп1= 6581,4·45/89,63 = 3304,3 Н

åХ = 0 RВY - RАY - Ft1 = 7383-2007-5376 = 0

Участок 1:

åМZ1 = 0; 0 · Z1 = МZ1

Участок 2:

åМZ2 = 0; RAХ · Z2 = М2

0£ Z2 £ Ln1

Z2 = 0 МZ2 = 0.

Z2 = Ln1 åМZ2 = RAХ · Ln1 = 3304,3 · 0,08963 = 296 Н

Участок 3:

åМZ3 = 0; RAХ · (Ln1 + Z3) = RBХ · Z3 = МZ3

0£ Z3 £ L 1

Z3 = 0 МZ3 = RAХ · Ln1= 3304,3 · 0,08963 = 296 Н

Z3 = L1

åМZ3=RAХ·(Ln1+L1)-RBХ·L1= 3304,3·(0,08963+0,045)-9885,6·0,045=0

Крутящий момент нагружает быстроходный вал на всей длине:

Т1 = 283 Н · м.

Суммарные радиальные нагрузки на опоры равны:

Суммарный изгибающий момент в опасном сечении под подшипником в опоре В:

Промежуточный вал


Принимаем с компоновки:

L2=95,2

L3=88,4

a2 = Tn2 / 2 + e · (d + D) / 6 = 23,9 мм

Для промежуточного вала выбираем конические однорядные подшипники средней серии 7313А с размерами d = 65 мм, D = 140 мм, Т = 36,5, е =0,35. Определение составляющих опорных реакций и изгибающих моментов.

Рассмотрим плоскость YOZ:

Σ МCY = 0 Σ МDY = 0

Fa2 · dm2 / 2 – Fr2 · L2 + Fr3 · (Ln2 - L3) + Fa3 · dw2 /2 - RDY · Ln2 = 0.

Fa3 · dw2 /2 – Fr3 · L3 + Fr2 · (Ln2 - L2) + Fa2 · dm2 /2 - RCY · Ln2 = 0.

dm2 = 0,857 · de2 = 0,857 · 303,8295= 260,4 мм

åFУ = 0

RСУ - Fr2 + Fr3 - RDУ = 2415-5222+7725-4900≈0

Построение эпюры изгибающих моментов

Участок 1:

åМZ1 = 0; - RCУ · Z1 = МZ1

0 £ Z1 £ L 2

Z1 = 0 МZ1 = - RCУ · 0 = 0.

Z1 = L2 МZ1 = - RCУ · L2 = -2415 · 0,088= -212,5

Участок 2:

åМZ2 = 0; - RCУ · (L2 + Z2) + Fr2 · z2 + Fa2 · dm2 / 2 = Мz2

0 £ Z2 £ (Ln2 - L3 - L2 )

Z2 = 0

åМZ2=-RCУ · L2 + Fa2 · dm2 / 2 = -2415 · 0,0952 + 1530 · 0,13 = -31 Н·м

Z2 = Ln2 - L3 - L2

МZ2=-RCУ·(Ln2-L3)+Fr2 · (Ln2 - L3 - L2)+ Fa2 · dm2/2 = -2415·(0,2642- -0,0884)+5222(0,2642-0,0884-0,0952)+1530·0,2604/2 = 193 Н·м

Участок 3:

åМZ3 = 0; -RCУ·(Ln2-L3+z3)+Fr2 · (Ln2 - L3- L2 +z3)+Fa2 · dm2 / 2 –

-Fr3 · Z3 +Fa3 · dw3 / 2 = МZ3


Информация о работе «Расчет и проектирование коническо-цилиндрического редуктора»
Раздел: Промышленность, производство
Количество знаков с пробелами: 48035
Количество таблиц: 0
Количество изображений: 11

Похожие работы

Скачать
46571
9
9

... по ступеням и определить силовые и скоростные параметры на валах привода   1.2 Расчетная схема Рисунок 1.1 - Схема для расчета привода пластинчатого конвейера 1.3 Данные для расчета Таблица 1.1 – Данные для расчета привода пластинчатого конвейера Рвых. ,кВт 6 Uобщ. 35 Цилиндрическая передача I прямозубая Цилиндрическая передача II прямозубая Рама Сварная Смазка ...

Скачать
44396
5
8

... закрытой цилиндрической зубчатой передачи   1.         Определяем главный параметр – межосевое расстояние : , где  (для косозубых передач) – вспомогательный коэффициент,  (для шестерни в нестандартных цилиндрических редукторах) – коэффициент ширины венца колеса, для расчета принимаем ,  – передаточное число редуктора, - вращающий момент на тихоходном валу, - допускаемое контактное ...

Скачать
24650
0
1

... , Из выражения (3.21) . По формуле (3.22) определяем По формуле (3.23) Напряжение изгиба определяем по формуле (3.24)  < . Прочность по напряжениям изгиба обеспечена. 4. РАСЧЕТ ТИХОХОДНОЙ ПЕРЕДАЧИ РЕДУКТОРА Делительный диаметр шестерни d1 (мм) определяется из условия обеспечения контактной прочности по формуле из условия соосности межосевое расстояние аw= ...

Скачать
43940
3
5

... a2= m(z1+z2)/2= 0,3(24+49)/2= 10,95 a3= m(z1+z2)/2= 0,3(24+54)/2= 11,7 a4= m(z1+z2)/2= 0,3(24+55)/2= 11,85 a5= m(z1+z2)/2= 0,3(24+68)/2= 13,8 Определим ширину венца: b= (3…15)m= 10·0,3= 3 Определим высоту зуба: h= 2,5m= 2,5·0,3= 0,75 5. Разработка конструкций редуктора Разработка конструкции состоит в расчете и выборе его элементов: зубчатые колеса, валы, подшипники и корпуса. ...

0 комментариев


Наверх