0 £ Z3 £ L3
Z3 = 0; MZ3= – 2415 · (0,2642 – 0,0884+0,0335) + 5222·(0,2642 – 0,0884-– 0,0952+ 0,0335) + 1530·0,2604/2 - 7725·0,0335 + 5160·0,0928/2 = 284 Н·м
Z3 = L3
åМZ3=-RCУ·Ln2+Fr2 · (Ln2-L2)+Fa2·dm2 / 2 - Fr3 · L3 + Fa3 · dw3 / 2 = = -2415·0,2642 + 5222·(0,2642 - 0,0952) + 1530·0,2604/2 - 7725·0,0884/2 + +5160·0,0928/2=0
Рассмотрим плоскость XOZ:
å MCХ = 0;
Ft2 · L2 + Ft3 · (Ln2 - L2) – RDХ · Ln2 = 0.
RDХ=Ft2·(L2/Ln2)+Ft3·(1-L3/Ln2)=6581,4·0,0952/0,2642+20585·(1-
-0,0884/0,2642)=16 070 Нå MDХ = 0;
-Ft3 · L3 – Ft2 (Ln2 – L2) + FCX · Ln2=0
RCX=11097,5 Н
å X = 0; RСХ - Ft2 - Ft3 + RDХ = 11097,5-6581,4-20585+16070≈0
Построение эпюры изгибающих моментов
Участок 1:
åМZ1 = 0; RCХ · Z1 = МZ1
0 £ Z1 £ L 2
Z1 = 0 МZ1 = RCХ · 0 = 0.
Z1 = L2 МZ1 = RCХ · L2 = 11097,5·0,0952=1056,5 Н
Участок 2:
åМZ2 = 0; RCХУ · (L2 + Z2) + Ft2 · z2 = Мz2
0 £ Z2 £ (Ln2 - L3 - L2)
Z2 = 0 åМZ2 = RCХ · L2 = 11097,5·0,0952=1056,5 Н
Z2 = Ln2 - L3 - L2
МZ2 = RCХ · (Ln2 - L3) - Ft2 · (Ln2 - L3 - L2) = 1420,5 Н
Участок 3:
åМZ3 = 0;
RCХ · (Ln2 - L3 +z3) - Ft2 · (Ln2 - L3 - L2 + z3) - Ft3 · Z3 = МZ3
0 £ Z3 £ L3
Z3 = 0
МZ3 = RCХ · (Ln2 - L3) - Ft2 · (L n2 - L3 - L2 ) = 1420,5 Н
Z3 = L3
åМZ3 = RCХ · Ln2 - Ft2 · (Ln2 - L2) - Ft3 · L3 = 0 Н
Крутящий момент нагружает промежуточный вал на участке между шестерней и колесом и равен Т2 = 955 Н·м
Суммарные радиальные нагрузки на опоры равны
Суммарный изгибающий момент под коническим колесом:
Суммарный изгибающий момент под цилиндрической шестерней:
Тихоходный вал
Принимаем
D4 = D2 + (bw3 - bw4) / 2 = 26,3
Для тихоходного вала ориентировочно выбираем подшипники роликовые радиально-упорные легкие широкие 7522 с размерами d = 110 мм, D = 200 мм, B=56 мм. Колесо, расположенное на тихоходном валу, находится зацеплении с шестерней промежуточного вала, поэтому при компоновке третьего вала строго выдерживаем положение центра зубчатого зацепления.
Расчетные расстояния:
L5 = bw4 /2 + D4 + Bn / 2 = 104,3 мм
L4 = bw3 /2 + D3 + Lcт + D2 + Bn / 2 = 191,7 мм
Определение составляющих опорных реакций и изгибающих моментов
Рассмотрим плоскость YOZ:
åFУ = 0 REУ + RKУ - Fr4 = 0;
Построение эпюры изгибающих моментов
Участок 1:
åМZ1 = 0; - RЕУ · Z1 = МZ1
0 £ Z1 £ L 4
Z1 = 0 МZ1 = - RЕУ · 0 = 0.
Z1 = L4 МZ1 = - RЕУ ∙ L4 = -2970·0,1917= -570 Н·м
Участок 2:
åМZ2 = 0; - RЕУ · (L4 + Z2) + Fa4 · dw4 /2 – Fr4 · z2 = Мz2
0 £ Z2 £ L 5
Z2 = 0
åМZ2 = - RЕУ · L4 + Fa4 · dw4 / 2 = -570 + 7725 · 0,3969/2 = 963
Z2 = L5
МZ2 = - RЕУ · (L4 + L5) + Fa4 · dw4 / 2 + Fr4 · L5 = 0
Тихоходный вал редуктора соединяется с валом барабана посредством муфты. Учитывая, что редуктор и барабан не располагаются на общей раме, для компенсации возможной в этом случае несоосности используем цепную муфту [6]. Эта муфта должна передавать крутящий момент Т111 = 4150 Н·м и диаметр вала в месте посадки d111 = 110 мм. По табл. 11.4, с. 275 [6] выбираем муфту цепную 4000-110 ГОСТ 20742 – 81 с длиной полумуфты Lм = 94 мм делительным диаметром звездочки dд = 229 мм. [6, с. 148]
dд = t / sin 180/z = 229
где t = 50,8 – шаг цепи, z = 14 – число зубьев звездочки.
Нагрузка от муфты определяются по формуле
Fm = 0,2 · (2 · T3 /d д ) = 7250 Н
С достаточной точностью можно принять, что сила Fm приложена к тихоходному валу редуктора на расстоянии L6 = 1,5 · Lм = 225 мм от опоры Е.
Принимаем, что сила Fm действует в наиболее опасной плоскости XOZ, где наибольшие нагрузки на вал.
Рассмотрим плоскость XOZ.
{åMEХ = 0
FM · L6 – Ft4 · L4 + RKХ · (L4 + L5) = 0
åMKХ = 0
Ft4 · L 5 – REХ · (L4 + L5) + FM · (L4 + L5 + L6) = 0
å FХ = 0;
REХ - FM - Ft4 + RKХ = 20 000 + 7250 – 20585 – 7820 ≈ 0
Построение эпюры изгибающих моментов.
Участок 1:
åМZ1 = 0; FM · Z1 = МZ1
0 £ Z1 £ L 6
Z1 = 0 МZ1 = FM · 0 = 0
Z2 = L6 МZ1 = FM · L6 = 7250 · 0,225 = 1631,25 Н
Участок 2:
åМZ2 = 0; FM · (L6 + Z2) - REХ · z2 = Мz2
0 £ Z2 £ L4
Z2 = 0 åМZ2 = FM · L6 = 7250 · 0,225 = 1631,25 Н
Z2 = L4
МZ2=FM·(L6 + L4)-REХ·L4 = 7250·(0,225+0,1917)-20000·0,1917=-813 Н
Участок 3:
åМZ3 = 0;
FM · (L6 + L4 + z3) - REХ · (L4 + z3) - Ft4 ·Z3 = МZ3
0 £ Z3 £ L5
Z3 = 0
МZ3 = FM · (L6 + L4) - REХ · L4 = -813 Н
Z3 = L5
åМZ3 = FM · (L6 + L4 + L5) - REХ · (L4 + L5) + Ft4 · L5 = 0
Крутящий момент нагружает тихоходный вал на участке от зубчатого колеса до муфты и передается на вал барабана Т111 = 4152 Н·м
Суммарные радиальные нагрузки на опоры равны:
Суммарный изгибающий момент под зубчатым колесом:
... по ступеням и определить силовые и скоростные параметры на валах привода 1.2 Расчетная схема Рисунок 1.1 - Схема для расчета привода пластинчатого конвейера 1.3 Данные для расчета Таблица 1.1 – Данные для расчета привода пластинчатого конвейера Рвых. ,кВт 6 Uобщ. 35 Цилиндрическая передача I прямозубая Цилиндрическая передача II прямозубая Рама Сварная Смазка ...
... закрытой цилиндрической зубчатой передачи 1. Определяем главный параметр – межосевое расстояние : , где (для косозубых передач) – вспомогательный коэффициент, (для шестерни в нестандартных цилиндрических редукторах) – коэффициент ширины венца колеса, для расчета принимаем , – передаточное число редуктора, - вращающий момент на тихоходном валу, - допускаемое контактное ...
... , Из выражения (3.21) . По формуле (3.22) определяем По формуле (3.23) Напряжение изгиба определяем по формуле (3.24) < . Прочность по напряжениям изгиба обеспечена. 4. РАСЧЕТ ТИХОХОДНОЙ ПЕРЕДАЧИ РЕДУКТОРА Делительный диаметр шестерни d1 (мм) определяется из условия обеспечения контактной прочности по формуле из условия соосности межосевое расстояние аw= ...
... a2= m(z1+z2)/2= 0,3(24+49)/2= 10,95 a3= m(z1+z2)/2= 0,3(24+54)/2= 11,7 a4= m(z1+z2)/2= 0,3(24+55)/2= 11,85 a5= m(z1+z2)/2= 0,3(24+68)/2= 13,8 Определим ширину венца: b= (3…15)m= 10·0,3= 3 Определим высоту зуба: h= 2,5m= 2,5·0,3= 0,75 5. Разработка конструкций редуктора Разработка конструкции состоит в расчете и выборе его элементов: зубчатые колеса, валы, подшипники и корпуса. ...
0 комментариев