1.3.3.2 Расчет нагрузок, действующих на корпус колеса и реборды [5]
Расчетными нагрузками, действующими на корпус колеса, являются осевые, радиальные и боковые усилия.
Величину осевой нагрузки определим по формуле:
Q=π×Pp×[(R-rп)2-R0], (1.46.)
где Pp – расчетное давление в пневматике,
Pp=k×P0 , (1.47.)
P0=0,95 МПа – рабочее давление в пневматике,
k=3 – коэффициент запаса прочности,
Pp=3×0,95=2,85 (МПа);
R=0,465 м – радиус пневматика
rп=0,1525 м – радиус круглого сечения пневматика;
(1.48.)
Подставим данные в выражение (1.46.) получим:
Q=3,14×2,85×[(0,465-0,1525)2-0,2042]×106=501504,2 (Н).
Разрушающая радиальная нагрузка на колесо:
Pразр=kp×PСТ взл max, (1.49)
где kp=6,5 – коэффициент безопасности;
PСТ взл max=71367,36 Н – стояночная нагрузка на колесо со взлетной массой самолета;
Pразр=6,5×71367,36=463887,84 (Н).
Радиальная нагрузка будет уравновешиваться реактивными силами R1 и R2, действующих на корпус колеса через середину наружных обойм подшипников (рис 1.9.).
Момент радиальной нагрузки относительно точки "0" будет равен:
(1.50)
где Pразр – радиальная разрушающая нагрузка;
b0 – ширина колеса между серединами вершин обойм;
a – расстояние от подшипника до плоскости разъема колеса.
Тогда уравнение сумм моментов относительно точек приложения будет иметь вид:
(1.51.)
следовательно:
(1.52.)
Боковая разрушающая нагрузка:
Pбок=kб×PСТ взл max, (1.53)
где kб=2,5 – коэффициент безопасности
Pбок=2,5×71367,36=178418,4 (Н).
Радиус приложения боковой нагрузки:
(1.54.)
где D=0,93 м – диаметр пневматика;
δп.о.=0,187 – усадка при полном обжатии пневматика;
(м).
Боковая сила Pбок создает боковой момент:
Mбок=Pбок×Rбок , (1.55.)
где Pбок – боковая разрушающая нагрузка;
Rбок – радиус приложения боковой нагрузки;
Mбок=178418,4×0,3247=57932,45 (Н·м).
Мбок будет уравновешиваться реактивными силами Fбок и Pбок´, действующими на корпус колеса через внешние обоймы подшипников (рис.1.10.):
(1.56.)
где Mбок – боковой момент;
b0=0,154 м – расстояние между серединами внешних обойм подшипников;
(Н),
Pбок´=Pбок=178418,4 Н.
1.3.3.3 Расчет на прочность реборды колеса
Реборда работает на изгиб, как консольная балка, нагруженная силой Q (рис.1.11.).
Расчет произведем в трех сечениях.
Сечение 1-1:
Момент сопротивления сечения:
(1.57.)
где D0=0,41 м – диаметр сечения 1-1;
b =0,015 м – минимальная толщина сечения;
(м3).
Нормальное напряжение при изгибе:
σр=σсж= (1.58.)
где L – плечо приложения силы Q,
(1.59.)
где D0=0,41 м – диаметр сечения,
D1=0,478 м – диаметр реборды,
(м);
Q=501504,2 Н – осевая нагрузка;
W – момент сопротивления сечения;
(МПа).
Коэффициент избытка прочности:
(1.60.)
где kп=1,35 – коэффициент пластичности;
σв´– пониженный временный предел прочности материала:
σв´=0,78×σв, (1.61)
σв´=0,78×490=382,2 (МПа);
тогда
Определим касательные напряжения при изгибе:
τmax= (1.62.)
где Q=501504,2 Н – осевая нагрузка;
F – площадь поперечного сечения:
F=π×D0×b, (1.63.)
D0=0,41 м – диаметр сечения,
b=0,015 м – минимальная толщина сечения,
F=3,14×0,41×0,15=0,01931 (м2);
тогда
τmax= = 38956824 (Па)=38,96 МПа.
Коэффициент избытка прочности:
(1.64.)
где σв´ - пониженный временный предел прочности;
τmax – касательные напряжения при изгибе;
Сечение 1-2:
Средний диаметр сечения будет равен:
Dср=D0 – h1×sin α, (1.65.)
где h1=0,02 м – высота сечения;
α = 45° - угол между сечениями 1-1 и 1-2;
Dср=0,41-0,02×sin 45°=0,3959 м.
Нормальные напряжения для зон сжатых и растянутых волокон при изгибе и растяжении:
σр = σи+σр´= (1.66.)
где L1 – плечо приложения силы Q,
L1=L+(м);
Wр – момент сопротивления сечения,
Wр= (1.67.)
где Dср – средний диаметр сечения,
h1 – высота сечения,
Wр= (м3);
F – площадь сечения 1-2,
F=π×Dср×h1=3,14×0,3959×0,02=0,0249 (м2);
тогда
Коэффициент избытка прочности:
(1.68.)
где kп=1,35 – коэффициент пластичности,
используя формулу (1.68.) получим:
Сечение 1-3:
Средний диаметр сечения 1-3:
Dср=D0 – (1,69)
где D0=0,41 м – диаметр сечения 1-1;
h2=0,02 м – высота сечения 1-3;
Dср=0,41-
Нормальные напряжения для зон сжатых и растянутых волокон при изгибе и растяжении:
σр = σи+σр´ (1.70.)
где L2 – плечо приложения силы Q в сечении 1-3,
L2=L+
Wр – момент сопротивления сечения,
Wр= (1.71.)
где Dср – средний диаметр сечения 1-3,
h2 – высота сечения 1-3,
Wр=
F – площадь сечения 1-3,
F=π×Dср×h2=3,14×0,4×0,02=0,0251 (м2);
тогда
Коэффициент избытка прочности:
(1.72.)
где kп=1,35 – коэффициент пластичности,
используя формулу (1.68.) получим:
... масла, л 10 103 45 3. Рабоий уровень масла в гидробаках, л 36 36 20 4. Производительность нагнетающих насосов, л/мин 110 55 55 1.2 Анализ работы гидросистемы самолета Ту-154 Гидравлическая система самолета Ту-154 является функциональной системой, надежность которой существенно влияет на безопасность полетов, поскольку за счет работы гидрооборудования осуществляются такие жизненно ...
... л.с. Использование двухтактного дизельного двигателя привело к конструктивным изменениям в трансмиссии и приводах управления движением. Имеются и другие конструктивные отличия, например, в установке зенитного пулемета. Основные характеристики остались без изменений. Т-80УД - это украинский вариант от ХКБМ. Технические характеристики Т-80 Длина, м 9,7 Высота, м 2,6 Ширина, м 2,2 ...
... техника одержали новую выдающуюся победу, Успешно выполнен испытательный запуск универсальной ракетно-космической транспортной системы "Энергия" и орбитального корабля "Буран". Подтверждены правильность принятых инженерных и конструкторских решений, эффективность методов экспериментальной отработки и высокая надежность всех систем этого сложнейшего ...
... ) при запуске в серийное производство контейнеров с оборудованием. Все это ведет к снижению сроков и затрат на подготовку производства. 5Автоматизированное проектирование деталей крыла В настоящем разделе проекта рассматривается автоматизированное проектирование деталей и узлов с целью увязки конструкции и подготовки информации для изготовления шаблонов, технологической оснастки и самих деталей. ...
0 комментариев