1 этап. Оценка значимости модели в целом.
Таблица 4.
ВЫВОД ИТОГОВ | |||||
Регрессионная статистика | |||||
Множественный R | 0,985324602 | ||||
R-квадрат | 0,970864572 | ||||
Нормированный R-квадрат | 0,963580715 | ||||
Стандартная ошибка | 0,453164887 | ||||
Наблюдения | 11 | ||||
Дисперсионный анализ | |||||
| df | SS | MS | F | Значимость F |
Регрессия | 2 | 54,74441 | 27,3722 | 133,289901 | 0,00000072 |
Остаток | 8 | 1,642867 | 0, 205358 | ||
Итого | 10 | 56,38727 | |||
Модель линейной регрессии с двумя фактором Х1 и X6 значима в целом согласно F-критерию (F=133,2899) с приемлемым уровнем значимости 0,00000072 ≤ 0,05 Итак, получаем модель | |||||
| Коэф-ты | Станд. ошибка | t-стат. | P-Значение |
|
Y-пересечение | 27,18887556 | 17,92439 | 1,516864 | 0,16777466 | |
Х1 | -0,1220023 | 0,146648 | -0,83194 | 0,42957614 | |
Х6 | 0,86279739 | 0,058131 | 14,84242 | 0,000000418 |
Согласно критерию Стьюдента 2 параметра модели a=27,18 и =-0,122 незначимы с приемлемыми уровнями >0,05 и >0,05. Следовательно, эта модель неудачна и не может быть использована к анализу и прогнозу индекса цен платных услуг. Следует изменить спецификацию модели (необходимо убрать фактор Х1).
Используя инструмент РЕГРЕССИЯ, оценим 2 модель.
... , ; , , ; Случай группированных данных. Подставим найденные значения в уравнеиня линейной регрессии Y на x и X на y. Получим: y(x) = 17,14 – 1,4*x; x(y) = 10,83 – 0,54*y; Проверка: Задание 5 Для негруппированных данных нанести графики выборочных регрессионных прямых на диаграмму рассеивания. Задание 6 Для негруппированных данных по найденным оценкам параметров ...
... теперь на основе выше рассчитанного доверительный интервал: 3.Сравнительный анализ расчетов, произведенных с помощью формул Excel и с использованием «Пакета анализа» Если сравнивать между собой результаты, полученные при расчетах линейной и степенной регрессионной модели, то можно выделить следующее: 1. Значение b1 в линейной регрессионной модели < b1 в степенной регрессионной ...
... 9472;───────┴─────────┘ Реализация алгоритма многомерного регрессионного анализа начинается с расчета важнейших статистических характеристик исходной информации и матрицы выборочных парных коэффициентов корреляции. Рассмотрим более подробно вариационные характеристики переменной у: ...
... деле независимой постоянной составляющей в отклике нет (альтернатива – гипотеза Н1: a ¹ 0). Для проверки этой гипотезы, с заданным уровнем значимости g, рассчитывается t-статистика, для парной регрессии: Значение t-статистики сравнивается с табличным значением tg/2(n-1) - g/2-процентной точка распределения Стьюдента с (n-1) степенями свободы. Если |t| < tg/2(n-1) – гипотеза Н0 не ...
0 комментариев