1 этап. Оценка значимости модели в целом.
Таблица 5.
ВЫВОД ИТОГОВ | |||||
Регрессионная статистика | |||||
Множественный R | 0,984045 | ||||
R-квадрат | 0,968344 | ||||
Нормированный R-квадрат | 0,964827 | ||||
Стандартная ошибка | 0,445346 | ||||
Наблюдения | 11 | ||||
Дисперсионный анализ | |||||
| df | SS | MS | F | Значимость F |
Регрессия | 1 | 54,60227273 | 54,60227 | 275,3055768 | 0,0000000468 |
Остаток | 9 | 1,785 | 0, 198333 | ||
Итого | 10 | 56,38727273 | |||
Модель линейной регрессии с фактором X6 значима в целом согласно F-критерию (F=275,306) с приемлемым уровнем значимости 0,0000000468 ≤ 0,05 Итак, получаем модель 2 этап. Оценка параметров модели. | |||||
| Коэф-ты | Станд. ошибка | t-стат. | P-Значение |
|
Y-пересечение | 12,98182 | 5,351909883 | 2,425642 | 0,038255004 | |
X6 | 0,880682 | 0,05307763 | 16,59233 | 0,0000000468 |
Согласно критерию Стьюдента 2 параметра модели a=12,98 и b=0,88 значимы с приемлемыми уровнями <0,05 и <0,05.
... , ; , , ; Случай группированных данных. Подставим найденные значения в уравнеиня линейной регрессии Y на x и X на y. Получим: y(x) = 17,14 – 1,4*x; x(y) = 10,83 – 0,54*y; Проверка: Задание 5 Для негруппированных данных нанести графики выборочных регрессионных прямых на диаграмму рассеивания. Задание 6 Для негруппированных данных по найденным оценкам параметров ...
... теперь на основе выше рассчитанного доверительный интервал: 3.Сравнительный анализ расчетов, произведенных с помощью формул Excel и с использованием «Пакета анализа» Если сравнивать между собой результаты, полученные при расчетах линейной и степенной регрессионной модели, то можно выделить следующее: 1. Значение b1 в линейной регрессионной модели < b1 в степенной регрессионной ...
... 9472;───────┴─────────┘ Реализация алгоритма многомерного регрессионного анализа начинается с расчета важнейших статистических характеристик исходной информации и матрицы выборочных парных коэффициентов корреляции. Рассмотрим более подробно вариационные характеристики переменной у: ...
... деле независимой постоянной составляющей в отклике нет (альтернатива – гипотеза Н1: a ¹ 0). Для проверки этой гипотезы, с заданным уровнем значимости g, рассчитывается t-статистика, для парной регрессии: Значение t-статистики сравнивается с табличным значением tg/2(n-1) - g/2-процентной точка распределения Стьюдента с (n-1) степенями свободы. Если |t| < tg/2(n-1) – гипотеза Н0 не ...
0 комментариев