39. Проверка адекватности модели регрессии

После построения уровня регрессии возникает вопрос о качестве решения.

Пусть при исследовании n пар наблюдений (хi, уi) получено уравнение регрессии У на Х.


`yi = a + bxi

Рассмотрим тождество:

yi - `yi = yi - `yi – (`yi -`yi)

Если переписать это уравнение в виде

(yi-`y) = (`yi-`y) + (yi-`y)

возвести обе части в квадрат и просуммировать по i, то получим

S(yi-`y)2 =S (`yi-`y)2 + S(yi-`y)2 (*)

Уравнение (*) является основополагающим в дисперсионном анализе.

Для сумм обычно вводятся названия:

Syi2 – нескорректированная сумма квадратов У-ков;

- коррекция на среднее суммы квадратов У-ков.

-сумма квадратов отношений относительно среднего наблюдений.

S (`yi-`y)2- сумма квадратов относительно регрессии.

S(yi-`yi)2 – сумма квадратов обусловленная регрессией.

40. Интервальные оценки. Доверительная вероятность, доверительный интервал

Интервальной называют оценку, которая определяется 2 числами – границами интервала. Она позволяет ответить на вопрос: внутри какого интервала и с какой вероятностью находится неизвестное значение оцениваемого параметра генеральной совокупности. Пусть θ точечная оценка параметра θ. Чем меньше разность θ - θ , тем точнее и лучше оценка. Обычно говорят о доверительной вероятности p = 1-α, с которой θ будет находиться в интервале θ-Δ < θ < θ+Δ, где: Δ (Δ > 0) – предельная ошибка выборки, которая может быть либо задана наперед, либо вычислена; a - риск или уровень значимости (вероятность того, что неравенство будет неверным). В качестве 1-a принимают значения 0,90;0,95;0,99;0,999. Доверительная вероятность показывает, что в (1-a) 100% случаев оценка будет накрываться указанным интервалом. Для построения доверительного интервала параметра а – математического ожидания нормального распределения, составляют выборочную характеристику (статистику), функционально зависимую от наблюдений и связанную с а, например, для повторного отбора:

Статистика u распределена по нормальному закону распределения с математическим ожиданием а = 0 и средним квадратическим отклонением s = 1. Отсюда

P(|u|<u a/2)= 1-s или 2Ф(ua/2)=1-s,

где Ф-функция Лапласа, ua/2 – квантиль нормального закона распределения, соответствующая уровню значимости a.

Определение доверительного интервала для средней и доли при случайном обороте. Определение доверительного интервала для средней и доли при типическом обороте;. Определение необходимой численности выборки. Распространение данных выборки на генеральную совокупность).


Где:

1) t— квантиль распределения соответствующая уровню значимости:

а) при n 30 t=- квантиль нормального закона распре деления,

б) при n<30t - квантиль распределения Стьюдента с v=n-1 степенями свободы для двусторонней области;

2)  - выборочная дисперсия:

а) при n30 можно считать, что

б) при n<30 вместо  берут исправленную выборочную дисперсию

S2 ()

далее везде рассматривается исправленная выборочная дисперсия S2;

З) рq — дисперсия относительной частоты в схеме повторных независимых испытаний;

4) N — объем генеральной совокупности;

5) n — объем выборки;

6)  — средняя арифметическая групповых дисперсий (внутригрупповая дисперсия);

7) — средняя арифметическая дисперсий групповых долей,

8)  — межсерийная дисперсия,

9) pqм.с. — межсерийная дисперсия доли;

10) Nc — число серий в генеральной совокупности;

11) nc — число отобранных серий (объем выборки);

12) — предельная ошибка выборки.


41. Статистические критерии проверки гипотез, уровень значимости и мощность критерия. Выбор м/у гипотезами Н0 и Н1 может сопровождаться ошибками 2 родов. Ошибка первого рода a означает вероятность принятия Н1, если верна гипотеза

Н0: a=Р(Н10)

Ошибка второго рода b означает вероятность принятия Н0 если верна гипотеза

Н1: b=Р(Н01)

Существует правильное решение двух видов

Р(Н00) = 1-a и Р(Н11)=1-b.

Правило, по которому принимается решение о том, что верна или неверна гипотеза Н0 называется критерием, где:

a=Р(Н10)

уровень значимости критерия;

М= Р(Н11)=1-b

мощность критерия. Статистический критерий К – случайная величина, с помощью которой принимают решение о принятии или отклонении Н0.



Информация о работе «О теории вероятностей»
Раздел: Математика
Количество знаков с пробелами: 70295
Количество таблиц: 2
Количество изображений: 1

Похожие работы

Скачать
59066
6
49

... Доказать: По определению второй смешанной производной. Найдем по двумерной плотности одномерные плотности случайных величин X и Y. Т.к. полученное равенство верно для всех х, то подинтегральные выражение аналогично В математической теории вероятности вводится как базовая формула (1) ибо предлагается, что плотность вероятности как аналитическая функция может не существовать. Но т.к. в нашем ...

Скачать
25559
0
0

... равна 0,515). Конец 19 в. и 1-я половина 20 в. отмечены открытием большого числа статистических закономерностей в физике, химии, биологии и т.п. Возможность применения методов теории вероятностей к изучению статистических закономерностей, относящихся к весьма далёким друг от друга областям науки, основана на том, что вероятности событий всегда удовлетворяют некоторым простым соотношениям, о ...

Скачать
125259
9
8

... {ξn (ω )}¥n=1 . Поэтому, во-первых, можно говорить о знакомой из математического анализа (почти) поточечной сходимости последовательностей функций: о сходимости «почти всюду», которую в теории вероятностей называют сходимостью «почти наверное». Определение 46. Говорят, что последовательность с. в. {ξn } сходится почти наверное к с. в. ξ при n ® ¥ , и пишут: ξn ...

Скачать
34707
0
6

... ничего другого, кроме как опять же события и . Действительно, имеем: *=, *=, =, =. Другим примером алгебры событий L является совокупность из четырех событий: . В самом деле: *=,*=,=,. 2.Вероятность. Теория вероятностей изучает случайные события. Это значит, что до определенного момента времени, вообще говоря, нельзя сказать заранее о случайном событии А произойдет это событие или нет. Только ...

0 комментариев


Наверх