28. Особенности статистического анализа количественных и качественных показателей
Методы шкалирования при обработке качественных признаков.
Основной задачей статистического анализа является оценка связи признаков м/у собой. Необходимо измерить признаки, в гуманитарных исследованиях более сложны, т.к. они касаются измерения не только количественных, но и качественных признаков.
Суть статистических методов – анализ чисел как таковых, а не истинных значений некоторого признака.
Если количественные показатели можно, то для качественных показателей можно экспертным путем оценить степень сходства или различия м/у парами объектов.
Объекты отражают в некотором многомерном пространстве, где каждая точка – это объект, а координаты – признаки.
Для этого используют методы многомерного шкалирования.
- матрица парных расстояний (количественный признак)
- матрица парных отклонений (качественный признак)
По матрицам изучается степень сходства и различия.
29. Неравенство Чебышева
Рассмотрим закон больших чисел в форме Чебышева.
Лемма Чебышева (Маркова). Если случайная величина X принимает только неотрицательные значения и имеет математическое ожидание М(Х), то для любого α>0 имеет место неравенство: P(X≥α)≤(M(X))/α.
Неравенство Чебышева. Если случайная величина X имеет математическое ожидание М(Х) и дисперсию D(X), то для любого ε>0 имеет место неравенство:
Неравенство Чебышева является в теории вероятностей общим фактом и позволяет оценить нижнюю границу вероятности.
Теорема. Закон больших чисел Чебышева. Пусть Х1, Х2, .. .,Хn - последовательность попарно независимых случайных величин, имеющих конечные математические ожидания и дисперсии, ограниченные сверху постоянной С = const (D(Xi)≤C(i=l, 2,...,n)). Тогда для любого ε>0,
Теорема показывает, что среднее арифметическое большого числа случайных величин с вероятностью сколь угодно близкой к 1 будет мало отклоняться от среднего арифметического математических ожиданий.
Следствие 1. Если вероятность наступления события А в каждом из n независимых испытаний равна р, m - число наступлений события А в серии из n независимых испытаний, то, каково бы ни было число е > 0, имеет место предел:
Таким образом устанавливается связь между относительной частотой появления события А и постоянной вероятностью р в серии из n независимых испытаний.
Следствие 2. Теорема Пуассона. Если в последовательности независимых испытаний вероятность появления события А в к-ом испытании равна р, то
где m - число появлений события А в серии из n испытаний.
Следствие 3. Теорема Бернулли. Если X1, Х2,.. .,Хn - последовательность независимых случайных величин таких, что
М(Х1) = М(Х2)=...= М(Хn) = а, D(Х1)< С, D(X2) < С,.. .,D(Xn)< С, где С = const
то, каково бы ни было постоянное число ε>0, имеет место предел:
Этот частный случай закона больших чисел позволяет обосновать правило средней арифметической.
Законы больших чисел не позволяют уменьшить неопределённость в каждом конкретном случае, они утверждают лишь о существовании закономерности при достаточно большом числе опытов. Например, если при подбрасывании монеты 10 раз появился герб, то это не означает, что в 11 раз появится цифра.
30. Центральная предельная теорема
В теории вероятностей и математической статистике большое значение имеет центральная предельная теорема Ляпунова, в которой утверждается, что если сложить большое число случайных величин, имеющих один или различные законы распределения, то случайная величина, являющаяся результатом суммы, при некоторых условиях, будет иметь нормальный закон распределения.
Примером центральной предельной теоремы (для последовательности независимых случайных величин) является интегральная теорема Муавра-Лапласа.
Теорема 1. Пусть производится n независимых опытов в каждом из которых вероятность наступления события А равна р (не наступления q=l-p, p≠0, р≠1). Если К - число появлений события А в серии из n испытаний, то при достаточно больших n СВ К можно считать нормально распределенной (М(К)=nр, σ(К)=√D(K)= √npq).
,Ф(x0) – функция Лапласа.
В более общем случае верна следующая теорема.
Теорема 2. Если случайные величины X1, Х2... Хnнезависимы, одинаково распределены и имеют конечную дисперсию, то при n→∞:
где М(Х)=а, σ2=D(Х); U - нормально распределенная случайная величина, M(U)=0,D(U)=1.
... Доказать: По определению второй смешанной производной. Найдем по двумерной плотности одномерные плотности случайных величин X и Y. Т.к. полученное равенство верно для всех х, то подинтегральные выражение аналогично В математической теории вероятности вводится как базовая формула (1) ибо предлагается, что плотность вероятности как аналитическая функция может не существовать. Но т.к. в нашем ...
... равна 0,515). Конец 19 в. и 1-я половина 20 в. отмечены открытием большого числа статистических закономерностей в физике, химии, биологии и т.п. Возможность применения методов теории вероятностей к изучению статистических закономерностей, относящихся к весьма далёким друг от друга областям науки, основана на том, что вероятности событий всегда удовлетворяют некоторым простым соотношениям, о ...
... {ξn (ω )}¥n=1 . Поэтому, во-первых, можно говорить о знакомой из математического анализа (почти) поточечной сходимости последовательностей функций: о сходимости «почти всюду», которую в теории вероятностей называют сходимостью «почти наверное». Определение 46. Говорят, что последовательность с. в. {ξn } сходится почти наверное к с. в. ξ при n ® ¥ , и пишут: ξn ...
... ничего другого, кроме как опять же события и . Действительно, имеем: *=, *=, =, =. Другим примером алгебры событий L является совокупность из четырех событий: . В самом деле: *=,*=,=,. 2.Вероятность. Теория вероятностей изучает случайные события. Это значит, что до определенного момента времени, вообще говоря, нельзя сказать заранее о случайном событии А произойдет это событие или нет. Только ...
0 комментариев